File size: 1,199 Bytes
5e4ba1c 7e236b4 b4748e4 7e236b4 5e4ba1c 7e236b4 a8fabbc 7e236b4 b411d6a a8fabbc b411d6a 6d96181 b411d6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: mit
language:
- en
pipeline_tag: token-classification
inference: false
tags:
- token-classification
- entity-recognition
- generic
- feature-extraction
---
## Model
The base version of [roberta-base](https://huggingface.co/roberta-base) finetunned on an artificially annotated subset of C4. This model provides domain-independent embedding for Entity Recognition Task.
## Usage
Embeddings can be used out of the box or fine-tuned on specific datasets.
Get embeddings:
```python
import torch
import transformers
model = transformers.AutoModel.from_pretrained(
'numind/entity-recognition-general-sota-v1',
output_hidden_states=True
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
'numind/entity-recognition-general-sota-v1'
)
text = [
"NuMind is an AI company based in Paris and USA.",
"See other models from us on https://huggingface.co/numind"
]
encoded_input = tokenizer(
text,
return_tensors='pt',
padding=True,
truncation=True
)
output = model(**encoded_input)
# for better quality
emb = torch.cat(
(output.hidden_states[-1], output.hidden_states[-7]),
dim=2
)
# for better speed
# emb = output.hidden_states[-1]
``` |