Update README.md
Browse files
README.md
CHANGED
@@ -18,8 +18,24 @@ pipeline_tag: text-generation
|
|
18 |
|
19 |
# NuMarkdown-Qwen2.5-VL 🖋️📄 → 📝
|
20 |
|
21 |
-
**NuMarkdown-Qwen2.5-VL** is the first reasoning vision-language trained to converts documents into clean GitHub-flavoured Markdown.
|
22 |
-
It is a lightweight fine-tune of **Qwen 2.5-VL-7B** using ~10 k synthetic doc-to-Markdown pairs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
---
|
25 |
|
@@ -34,24 +50,41 @@ It is a lightweight fine-tune of **Qwen 2.5-VL-7B** using ~10 k synthetic doc-to
|
|
34 |
## Quick start: 🤗 Transformers
|
35 |
|
36 |
```python
|
|
|
|
|
|
|
37 |
from PIL import Image
|
38 |
-
from transformers import
|
39 |
|
40 |
-
model_id = "NM-dev/NuMarkdown-Qwen2.5-VL"
|
41 |
-
|
42 |
-
|
43 |
-
model = AutoModelForCausalLM.from_pretrained(
|
44 |
model_id,
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
device_map="auto",
|
47 |
trust_remote_code=True,
|
48 |
)
|
49 |
|
50 |
-
img = Image.open("invoice_scan.png")
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
```
|
56 |
|
57 |
|
@@ -69,7 +102,7 @@ img = Image.open("invoice_scan.png")
|
|
69 |
prompt = proc(text="Convert this to Markdown with reasoning.", image=img,
|
70 |
return_tensors="np") # numpy arrays for vLLM
|
71 |
|
72 |
-
params = SamplingParameters(max_tokens=1024, temperature=0.
|
73 |
result = llm.generate([{"prompt": prompt}], params)[0].outputs[0].text
|
74 |
print(result)
|
75 |
```
|
|
|
18 |
|
19 |
# NuMarkdown-Qwen2.5-VL 🖋️📄 → 📝
|
20 |
|
21 |
+
**NuMarkdown-Qwen2.5-VL** is the first reasoning vision-language model trained to converts documents into clean GitHub-flavoured Markdown.
|
22 |
+
It is a lightweight fine-tune of **Qwen 2.5-VL-7B** using ~10 k synthetic doc-to-Markdown pairs, followed by a RL phase (GRPO) with a layout-centric reward.
|
23 |
+
|
24 |
+
By increasing the output length by 10% to 20%, the model outperform model of it's size and is competitive with top close source reasoning model
|
25 |
+
|
26 |
+
---
|
27 |
+
## Results
|
28 |
+
|
29 |
+
(we plan to realease a markdown arena -similar to llmArena- for complex table to markdown format)
|
30 |
+
|
31 |
+
Winrate of our model vs open source alternative:
|
32 |
+
|
33 |
+
//
|
34 |
+
|
35 |
+
|
36 |
+
Winrate vs close source alternative:
|
37 |
+
|
38 |
+
//
|
39 |
|
40 |
---
|
41 |
|
|
|
50 |
## Quick start: 🤗 Transformers
|
51 |
|
52 |
```python
|
53 |
+
from __future__ import annotations
|
54 |
+
|
55 |
+
import torch
|
56 |
from PIL import Image
|
57 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
58 |
|
59 |
+
model_id = "NM-dev/NuMarkdown-Qwen2.5-VL"
|
60 |
+
|
61 |
+
processor = AutoProcessor.from_pretrained(
|
|
|
62 |
model_id,
|
63 |
+
trust_remote_code=True,
|
64 |
+
)
|
65 |
+
|
66 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
67 |
+
model_id,
|
68 |
+
torch_dtype=torch.bfloat16,
|
69 |
+
attn_implementation="flash_attention_2",
|
70 |
device_map="auto",
|
71 |
trust_remote_code=True,
|
72 |
)
|
73 |
|
74 |
+
img = Image.open("invoice_scan.png").convert("RGB")
|
75 |
+
messages = [{
|
76 |
+
"role": "user",
|
77 |
+
"content": [
|
78 |
+
{"type": "image"},
|
79 |
+
],
|
80 |
+
}]
|
81 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
82 |
+
enc = processor(text=prompt, images=[img], return_tensors="pt").to(model.device)
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
out = model.generate(**enc, max_new_tokens=1024)
|
86 |
+
|
87 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
88 |
```
|
89 |
|
90 |
|
|
|
102 |
prompt = proc(text="Convert this to Markdown with reasoning.", image=img,
|
103 |
return_tensors="np") # numpy arrays for vLLM
|
104 |
|
105 |
+
params = SamplingParameters(max_tokens=1024, temperature=0.8, top_p=0.95)
|
106 |
result = llm.generate([{"prompt": prompt}], params)[0].outputs[0].text
|
107 |
print(result)
|
108 |
```
|