Create handler.py
Browse files- handler.py +37 -0
handler.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
MAX_INPUT_SIZE = 10_000
|
| 8 |
+
MAX_NEW_TOKENS = 4_000
|
| 9 |
+
|
| 10 |
+
def clean_json_text(text):
|
| 11 |
+
"""
|
| 12 |
+
Cleans JSON text by removing leading/trailing whitespace and escaping special characters.
|
| 13 |
+
"""
|
| 14 |
+
text = text.strip()
|
| 15 |
+
text = text.replace("\#", "#").replace("\&", "&")
|
| 16 |
+
return text
|
| 17 |
+
|
| 18 |
+
class EndpointHandler:
|
| 19 |
+
def __init__(self, path=""):
|
| 20 |
+
# load model and processor from path
|
| 21 |
+
self.model = AutoModelForCausalLM.from_pretrained(path,
|
| 22 |
+
trust_remote_code=True,
|
| 23 |
+
torch_dtype=torch.bfloat16,
|
| 24 |
+
device_map="auto")
|
| 25 |
+
self.model.eval()
|
| 26 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 27 |
+
|
| 28 |
+
def __call__(self, data: Dict[str, Any]) -> str:
|
| 29 |
+
data = data.pop("inputs")
|
| 30 |
+
template = data.pop("template")
|
| 31 |
+
text = data.pop("text")
|
| 32 |
+
input_llm = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>" + "{"
|
| 33 |
+
|
| 34 |
+
input_ids = self.tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda")
|
| 35 |
+
output = self.tokenizer.decode(self.model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True)
|
| 36 |
+
|
| 37 |
+
return clean_json_text(output.split("<|output|>")[1])
|