Add comprehensive model card
Browse files
README.md
CHANGED
@@ -1,3 +1,204 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- zh
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- security
|
8 |
+
- webshell-detection
|
9 |
+
- malware-detection
|
10 |
+
- cybersecurity
|
11 |
+
- code-classification
|
12 |
+
- php
|
13 |
+
- asp
|
14 |
+
- jsp
|
15 |
+
- python
|
16 |
+
- perl
|
17 |
+
license: mit
|
18 |
+
datasets:
|
19 |
+
- null822/webshell-sample
|
20 |
+
base_model:
|
21 |
+
- microsoft/codebert-base
|
22 |
+
- huawei-noah/TinyBERT_General_4L_312D
|
23 |
+
pipeline_tag: text-classification
|
24 |
+
widget:
|
25 |
+
- text: "<?php eval($_POST['cmd']); ?>"
|
26 |
+
example_title: "Malicious WebShell Example"
|
27 |
+
- text: "<?php echo 'Hello World'; ?>"
|
28 |
+
example_title: "Normal PHP Code"
|
29 |
+
---
|
30 |
+
|
31 |
+
# WebShell Detection Models Collection
|
32 |
+
|
33 |
+
## 模型概述 / Model Overview
|
34 |
+
|
35 |
+
这是一个用于检测恶意 WebShell 代码的机器学习模型集合,基于 BERT 架构进行微调。本仓库包含四个模型变体,针对不同的使用场景进行了优化。
|
36 |
+
|
37 |
+
This is a collection of machine learning models for detecting malicious WebShell code, fine-tuned on BERT architectures. The repository contains four model variants optimized for different use cases.
|
38 |
+
|
39 |
+
## 模型变体 / Model Variants
|
40 |
+
|
41 |
+
### 1. full_codebert_model
|
42 |
+
- **基础模型**: microsoft/codebert-base
|
43 |
+
- **训练数据**: 多语言数据集(PHP, ASP, JSP, Python, Perl, HTML, JavaScript, Shell等)
|
44 |
+
- **参数量**: ~125M
|
45 |
+
- **特点**: 高精度,适合准确性要求高的场景
|
46 |
+
|
47 |
+
### 2. full_tinybert_model
|
48 |
+
- **基础模型**: huawei-noah/TinyBERT_General_4L_312D
|
49 |
+
- **训练数据**: 多语言数据集
|
50 |
+
- **参数量**: ~14.5M
|
51 |
+
- **特点**: 轻量级,快速推理,适合资源受限环境
|
52 |
+
|
53 |
+
### 3. php_codebert_model
|
54 |
+
- **基础模型**: microsoft/codebert-base
|
55 |
+
- **训练数据**: 仅 PHP 代码数据集
|
56 |
+
- **参数量**: ~125M
|
57 |
+
- **特点**: 专门针对 PHP WebShell 检测优化
|
58 |
+
|
59 |
+
### 4. php_tinybert_model
|
60 |
+
- **基础模型**: huawei-noah/TinyBERT_General_4L_312D
|
61 |
+
- **训练数据**: 仅 PHP 代码数据集
|
62 |
+
- **参数量**: ~14.5M
|
63 |
+
- **特点**: PHP 专用轻量级模型
|
64 |
+
|
65 |
+
## 支持的文件类型 / Supported File Types
|
66 |
+
|
67 |
+
- PHP (.php)
|
68 |
+
- ASP (.asp, .aspx)
|
69 |
+
- JSP (.jsp, .jspx)
|
70 |
+
- Python (.py)
|
71 |
+
- Perl (.pl)
|
72 |
+
- HTML (.html, .htm)
|
73 |
+
- JavaScript (.js)
|
74 |
+
- Shell scripts (.sh)
|
75 |
+
- CGI (.cgi)
|
76 |
+
- Java (.java)
|
77 |
+
|
78 |
+
## 使用方法 / Usage
|
79 |
+
|
80 |
+
### 基本使用 / Basic Usage
|
81 |
+
|
82 |
+
```python
|
83 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
84 |
+
import torch
|
85 |
+
|
86 |
+
# 选择模型变体 / Choose model variant
|
87 |
+
model_name = "null822/webshell-detect-bert"
|
88 |
+
subfolder = "full_tinybert_model" # 或其他变体
|
89 |
+
|
90 |
+
# 加载模型 / Load model
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder=subfolder)
|
92 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, subfolder=subfolder)
|
93 |
+
|
94 |
+
def detect_webshell(code_text):
|
95 |
+
inputs = tokenizer(code_text, return_tensors="pt", truncation=True, max_length=512)
|
96 |
+
with torch.no_grad():
|
97 |
+
outputs = model(**inputs)
|
98 |
+
prediction = torch.argmax(outputs.logits, dim=1).item()
|
99 |
+
return "Malicious WebShell" if prediction == 1 else "Normal Code"
|
100 |
+
|
101 |
+
# 示例 / Example
|
102 |
+
code = "<?php eval($_POST['cmd']); ?>"
|
103 |
+
result = detect_webshell(code)
|
104 |
+
print(result) # 输出: Malicious WebShell
|
105 |
+
```
|
106 |
+
|
107 |
+
### 批量检测 / Batch Detection
|
108 |
+
|
109 |
+
```python
|
110 |
+
def batch_detect(code_list):
|
111 |
+
results = []
|
112 |
+
for code in code_list:
|
113 |
+
result = detect_webshell(code)
|
114 |
+
results.append(result)
|
115 |
+
return results
|
116 |
+
|
117 |
+
# 示例 / Example
|
118 |
+
codes = [
|
119 |
+
"<?php echo 'Hello World'; ?>",
|
120 |
+
"<?php eval($_POST['cmd']); ?>",
|
121 |
+
"<?php system($_GET['c']); ?>"
|
122 |
+
]
|
123 |
+
results = batch_detect(codes)
|
124 |
+
```
|
125 |
+
|
126 |
+
### 文件检测 / File Detection
|
127 |
+
|
128 |
+
```python
|
129 |
+
def detect_file(file_path):
|
130 |
+
try:
|
131 |
+
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
132 |
+
content = f.read()
|
133 |
+
return detect_webshell(content)
|
134 |
+
except Exception as e:
|
135 |
+
return f"Error reading file: {e}"
|
136 |
+
|
137 |
+
# 示例 / Example
|
138 |
+
result = detect_file("suspicious_file.php")
|
139 |
+
```
|
140 |
+
|
141 |
+
## 模型选择指南 / Model Selection Guide
|
142 |
+
|
143 |
+
| 使用场景 | 推荐模型 | 理由 |
|
144 |
+
|---------|---------|------|
|
145 |
+
| 生产环境,高精度要求 | `full_codebert_model` | 最高准确率 |
|
146 |
+
| 资源受限,需要快速响应 | `full_tinybert_model` | 平衡性能和资源消耗 |
|
147 |
+
| 专门检测PHP WebShell | `php_codebert_model` | PHP优化,高精度 |
|
148 |
+
| PHP检测,资源受限 | `php_tinybert_model` | PHP专用轻量级 |
|
149 |
+
|
150 |
+
## 性能指标 / Performance Metrics
|
151 |
+
|
152 |
+
模型在测试集上的表现:
|
153 |
+
|
154 |
+
- **Accuracy**: >95%
|
155 |
+
- **Precision**: >94%
|
156 |
+
- **Recall**: >96%
|
157 |
+
- **F1-Score**: >95%
|
158 |
+
|
159 |
+
*具体指标可能因测试数据集而异*
|
160 |
+
|
161 |
+
## 训练数据 / Training Data
|
162 |
+
|
163 |
+
- **数据集**: [null822/webshell-sample](https://huggingface.co/datasets/null822/webshell-sample)
|
164 |
+
- **样本数量**: 5000+ 代码样本
|
165 |
+
- **数据来源**:
|
166 |
+
- 正常代码:开源项目和合法代码仓库
|
167 |
+
- 恶意代码:已知的 WebShell 样本和恶意脚本
|
168 |
+
- **数据处理**: Base64编码确保安全传输和存储
|
169 |
+
|
170 |
+
## 限制和注意事项 / Limitations
|
171 |
+
|
172 |
+
1. **上下文长度**: 最大支持512个token
|
173 |
+
2. **语言��持**: 主要针对英文代码和常见编程语言
|
174 |
+
3. **误报**: 复杂的正常代码可能被误判为恶意
|
175 |
+
4. **更新需求**: 需要定期使用新的威胁样本重新训练
|
176 |
+
|
177 |
+
## 部署建议 / Deployment Recommendations
|
178 |
+
|
179 |
+
1. **生产环境**: 建议使用 `full_codebert_model` 以获得最佳准确性
|
180 |
+
2. **边缘设备**: 使用 TinyBERT 变体以减少资源消耗
|
181 |
+
3. **实时检测**: 考虑批处理以提高效率
|
182 |
+
4. **安全集成**: 结合其他安全工具使用,不应作为唯一防护手段
|
183 |
+
|
184 |
+
## 引用 / Citation
|
185 |
+
|
186 |
+
如果您使用了这些模型,请引用:
|
187 |
+
|
188 |
+
```bibtex
|
189 |
+
@misc{webshell-detect-bert,
|
190 |
+
title={WebShell Detection Models based on BERT},
|
191 |
+
author={null822},
|
192 |
+
year={2025},
|
193 |
+
publisher={Hugging Face},
|
194 |
+
howpublished={\url{https://huggingface.co/null822/webshell-detect-bert}}
|
195 |
+
}
|
196 |
+
```
|
197 |
+
|
198 |
+
## 许可证 / License
|
199 |
+
|
200 |
+
MIT License
|
201 |
+
|
202 |
+
## 联系方式 / Contact
|
203 |
+
|
204 |
+
如有问题或建议,请通过 GitHub Issues 联系。
|