nskeatts commited on
Commit
c9fa879
·
verified ·
1 Parent(s): 1124dde

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2519 -0
README.md ADDED
@@ -0,0 +1,2519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-large-en-v1.5
3
+ language:
4
+ - en
5
+ license: mit
6
+ tags:
7
+ - sentence-transformers
8
+ - feature-extraction
9
+ - sentence-similarity
10
+ - transformers
11
+ - mteb
12
+ - openvino
13
+ - nncf
14
+ - 8-bit
15
+ model-index:
16
+ - name: bge-large-en-v1.5
17
+ results:
18
+ - task:
19
+ type: Classification
20
+ dataset:
21
+ name: MTEB AmazonCounterfactualClassification (en)
22
+ type: mteb/amazon_counterfactual
23
+ config: en
24
+ split: test
25
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
26
+ metrics:
27
+ - type: accuracy
28
+ value: 75.8507462686567
29
+ - type: ap
30
+ value: 38.566457320228245
31
+ - type: f1
32
+ value: 69.69386648043475
33
+ - task:
34
+ type: Classification
35
+ dataset:
36
+ name: MTEB AmazonPolarityClassification
37
+ type: mteb/amazon_polarity
38
+ config: default
39
+ split: test
40
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
41
+ metrics:
42
+ - type: accuracy
43
+ value: 92.416675
44
+ - type: ap
45
+ value: 89.1928861155922
46
+ - type: f1
47
+ value: 92.39477019574215
48
+ - task:
49
+ type: Classification
50
+ dataset:
51
+ name: MTEB AmazonReviewsClassification (en)
52
+ type: mteb/amazon_reviews_multi
53
+ config: en
54
+ split: test
55
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
56
+ metrics:
57
+ - type: accuracy
58
+ value: 48.175999999999995
59
+ - type: f1
60
+ value: 47.80712792870253
61
+ - task:
62
+ type: Retrieval
63
+ dataset:
64
+ name: MTEB ArguAna
65
+ type: arguana
66
+ config: default
67
+ split: test
68
+ revision: None
69
+ metrics:
70
+ - type: map_at_1
71
+ value: 40.184999999999995
72
+ - type: map_at_10
73
+ value: 55.654
74
+ - type: map_at_100
75
+ value: 56.25
76
+ - type: map_at_1000
77
+ value: 56.255
78
+ - type: map_at_3
79
+ value: 51.742999999999995
80
+ - type: map_at_5
81
+ value: 54.129000000000005
82
+ - type: mrr_at_1
83
+ value: 40.967
84
+ - type: mrr_at_10
85
+ value: 55.96
86
+ - type: mrr_at_100
87
+ value: 56.54900000000001
88
+ - type: mrr_at_1000
89
+ value: 56.554
90
+ - type: mrr_at_3
91
+ value: 51.980000000000004
92
+ - type: mrr_at_5
93
+ value: 54.44
94
+ - type: ndcg_at_1
95
+ value: 40.184999999999995
96
+ - type: ndcg_at_10
97
+ value: 63.542
98
+ - type: ndcg_at_100
99
+ value: 65.96499999999999
100
+ - type: ndcg_at_1000
101
+ value: 66.08699999999999
102
+ - type: ndcg_at_3
103
+ value: 55.582
104
+ - type: ndcg_at_5
105
+ value: 59.855000000000004
106
+ - type: precision_at_1
107
+ value: 40.184999999999995
108
+ - type: precision_at_10
109
+ value: 8.841000000000001
110
+ - type: precision_at_100
111
+ value: 0.987
112
+ - type: precision_at_1000
113
+ value: 0.1
114
+ - type: precision_at_3
115
+ value: 22.238
116
+ - type: precision_at_5
117
+ value: 15.405
118
+ - type: recall_at_1
119
+ value: 40.184999999999995
120
+ - type: recall_at_10
121
+ value: 88.407
122
+ - type: recall_at_100
123
+ value: 98.72
124
+ - type: recall_at_1000
125
+ value: 99.644
126
+ - type: recall_at_3
127
+ value: 66.714
128
+ - type: recall_at_5
129
+ value: 77.027
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ name: MTEB ArxivClusteringP2P
134
+ type: mteb/arxiv-clustering-p2p
135
+ config: default
136
+ split: test
137
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
138
+ metrics:
139
+ - type: v_measure
140
+ value: 48.567077926750066
141
+ - task:
142
+ type: Clustering
143
+ dataset:
144
+ name: MTEB ArxivClusteringS2S
145
+ type: mteb/arxiv-clustering-s2s
146
+ config: default
147
+ split: test
148
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
149
+ metrics:
150
+ - type: v_measure
151
+ value: 43.19453389182364
152
+ - task:
153
+ type: Reranking
154
+ dataset:
155
+ name: MTEB AskUbuntuDupQuestions
156
+ type: mteb/askubuntudupquestions-reranking
157
+ config: default
158
+ split: test
159
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
160
+ metrics:
161
+ - type: map
162
+ value: 64.46555939623092
163
+ - type: mrr
164
+ value: 77.82361605768807
165
+ - task:
166
+ type: STS
167
+ dataset:
168
+ name: MTEB BIOSSES
169
+ type: mteb/biosses-sts
170
+ config: default
171
+ split: test
172
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
173
+ metrics:
174
+ - type: cos_sim_pearson
175
+ value: 84.9554128814735
176
+ - type: cos_sim_spearman
177
+ value: 84.65373612172036
178
+ - type: euclidean_pearson
179
+ value: 83.2905059954138
180
+ - type: euclidean_spearman
181
+ value: 84.52240782811128
182
+ - type: manhattan_pearson
183
+ value: 82.99533802997436
184
+ - type: manhattan_spearman
185
+ value: 84.20673798475734
186
+ - task:
187
+ type: Classification
188
+ dataset:
189
+ name: MTEB Banking77Classification
190
+ type: mteb/banking77
191
+ config: default
192
+ split: test
193
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
194
+ metrics:
195
+ - type: accuracy
196
+ value: 87.78896103896103
197
+ - type: f1
198
+ value: 87.77189310964883
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ name: MTEB BiorxivClusteringP2P
203
+ type: mteb/biorxiv-clustering-p2p
204
+ config: default
205
+ split: test
206
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
207
+ metrics:
208
+ - type: v_measure
209
+ value: 39.714538337650495
210
+ - task:
211
+ type: Clustering
212
+ dataset:
213
+ name: MTEB BiorxivClusteringS2S
214
+ type: mteb/biorxiv-clustering-s2s
215
+ config: default
216
+ split: test
217
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
218
+ metrics:
219
+ - type: v_measure
220
+ value: 36.90108349284447
221
+ - task:
222
+ type: Retrieval
223
+ dataset:
224
+ name: MTEB CQADupstackAndroidRetrieval
225
+ type: BeIR/cqadupstack
226
+ config: default
227
+ split: test
228
+ revision: None
229
+ metrics:
230
+ - type: map_at_1
231
+ value: 32.795
232
+ - type: map_at_10
233
+ value: 43.669000000000004
234
+ - type: map_at_100
235
+ value: 45.151
236
+ - type: map_at_1000
237
+ value: 45.278
238
+ - type: map_at_3
239
+ value: 40.006
240
+ - type: map_at_5
241
+ value: 42.059999999999995
242
+ - type: mrr_at_1
243
+ value: 39.771
244
+ - type: mrr_at_10
245
+ value: 49.826
246
+ - type: mrr_at_100
247
+ value: 50.504000000000005
248
+ - type: mrr_at_1000
249
+ value: 50.549
250
+ - type: mrr_at_3
251
+ value: 47.115
252
+ - type: mrr_at_5
253
+ value: 48.832
254
+ - type: ndcg_at_1
255
+ value: 39.771
256
+ - type: ndcg_at_10
257
+ value: 50.217999999999996
258
+ - type: ndcg_at_100
259
+ value: 55.454
260
+ - type: ndcg_at_1000
261
+ value: 57.37
262
+ - type: ndcg_at_3
263
+ value: 44.885000000000005
264
+ - type: ndcg_at_5
265
+ value: 47.419
266
+ - type: precision_at_1
267
+ value: 39.771
268
+ - type: precision_at_10
269
+ value: 9.642000000000001
270
+ - type: precision_at_100
271
+ value: 1.538
272
+ - type: precision_at_1000
273
+ value: 0.198
274
+ - type: precision_at_3
275
+ value: 21.268
276
+ - type: precision_at_5
277
+ value: 15.536
278
+ - type: recall_at_1
279
+ value: 32.795
280
+ - type: recall_at_10
281
+ value: 62.580999999999996
282
+ - type: recall_at_100
283
+ value: 84.438
284
+ - type: recall_at_1000
285
+ value: 96.492
286
+ - type: recall_at_3
287
+ value: 47.071000000000005
288
+ - type: recall_at_5
289
+ value: 54.079
290
+ - type: map_at_1
291
+ value: 32.671
292
+ - type: map_at_10
293
+ value: 43.334
294
+ - type: map_at_100
295
+ value: 44.566
296
+ - type: map_at_1000
297
+ value: 44.702999999999996
298
+ - type: map_at_3
299
+ value: 40.343
300
+ - type: map_at_5
301
+ value: 41.983
302
+ - type: mrr_at_1
303
+ value: 40.764
304
+ - type: mrr_at_10
305
+ value: 49.382
306
+ - type: mrr_at_100
307
+ value: 49.988
308
+ - type: mrr_at_1000
309
+ value: 50.03300000000001
310
+ - type: mrr_at_3
311
+ value: 47.293
312
+ - type: mrr_at_5
313
+ value: 48.51
314
+ - type: ndcg_at_1
315
+ value: 40.764
316
+ - type: ndcg_at_10
317
+ value: 49.039
318
+ - type: ndcg_at_100
319
+ value: 53.259
320
+ - type: ndcg_at_1000
321
+ value: 55.253
322
+ - type: ndcg_at_3
323
+ value: 45.091
324
+ - type: ndcg_at_5
325
+ value: 46.839999999999996
326
+ - type: precision_at_1
327
+ value: 40.764
328
+ - type: precision_at_10
329
+ value: 9.191
330
+ - type: precision_at_100
331
+ value: 1.476
332
+ - type: precision_at_1000
333
+ value: 0.19499999999999998
334
+ - type: precision_at_3
335
+ value: 21.72
336
+ - type: precision_at_5
337
+ value: 15.299
338
+ - type: recall_at_1
339
+ value: 32.671
340
+ - type: recall_at_10
341
+ value: 58.816
342
+ - type: recall_at_100
343
+ value: 76.654
344
+ - type: recall_at_1000
345
+ value: 89.05999999999999
346
+ - type: recall_at_3
347
+ value: 46.743
348
+ - type: recall_at_5
349
+ value: 51.783
350
+ - type: map_at_1
351
+ value: 40.328
352
+ - type: map_at_10
353
+ value: 53.32599999999999
354
+ - type: map_at_100
355
+ value: 54.37499999999999
356
+ - type: map_at_1000
357
+ value: 54.429
358
+ - type: map_at_3
359
+ value: 49.902
360
+ - type: map_at_5
361
+ value: 52.002
362
+ - type: mrr_at_1
363
+ value: 46.332
364
+ - type: mrr_at_10
365
+ value: 56.858
366
+ - type: mrr_at_100
367
+ value: 57.522
368
+ - type: mrr_at_1000
369
+ value: 57.54899999999999
370
+ - type: mrr_at_3
371
+ value: 54.472
372
+ - type: mrr_at_5
373
+ value: 55.996
374
+ - type: ndcg_at_1
375
+ value: 46.332
376
+ - type: ndcg_at_10
377
+ value: 59.313
378
+ - type: ndcg_at_100
379
+ value: 63.266999999999996
380
+ - type: ndcg_at_1000
381
+ value: 64.36
382
+ - type: ndcg_at_3
383
+ value: 53.815000000000005
384
+ - type: ndcg_at_5
385
+ value: 56.814
386
+ - type: precision_at_1
387
+ value: 46.332
388
+ - type: precision_at_10
389
+ value: 9.53
390
+ - type: precision_at_100
391
+ value: 1.238
392
+ - type: precision_at_1000
393
+ value: 0.13699999999999998
394
+ - type: precision_at_3
395
+ value: 24.054000000000002
396
+ - type: precision_at_5
397
+ value: 16.589000000000002
398
+ - type: recall_at_1
399
+ value: 40.328
400
+ - type: recall_at_10
401
+ value: 73.421
402
+ - type: recall_at_100
403
+ value: 90.059
404
+ - type: recall_at_1000
405
+ value: 97.81
406
+ - type: recall_at_3
407
+ value: 59.009
408
+ - type: recall_at_5
409
+ value: 66.352
410
+ - type: map_at_1
411
+ value: 27.424
412
+ - type: map_at_10
413
+ value: 36.332
414
+ - type: map_at_100
415
+ value: 37.347
416
+ - type: map_at_1000
417
+ value: 37.422
418
+ - type: map_at_3
419
+ value: 33.743
420
+ - type: map_at_5
421
+ value: 35.176
422
+ - type: mrr_at_1
423
+ value: 29.153000000000002
424
+ - type: mrr_at_10
425
+ value: 38.233
426
+ - type: mrr_at_100
427
+ value: 39.109
428
+ - type: mrr_at_1000
429
+ value: 39.164
430
+ - type: mrr_at_3
431
+ value: 35.876000000000005
432
+ - type: mrr_at_5
433
+ value: 37.169000000000004
434
+ - type: ndcg_at_1
435
+ value: 29.153000000000002
436
+ - type: ndcg_at_10
437
+ value: 41.439
438
+ - type: ndcg_at_100
439
+ value: 46.42
440
+ - type: ndcg_at_1000
441
+ value: 48.242000000000004
442
+ - type: ndcg_at_3
443
+ value: 36.362
444
+ - type: ndcg_at_5
445
+ value: 38.743
446
+ - type: precision_at_1
447
+ value: 29.153000000000002
448
+ - type: precision_at_10
449
+ value: 6.315999999999999
450
+ - type: precision_at_100
451
+ value: 0.927
452
+ - type: precision_at_1000
453
+ value: 0.11199999999999999
454
+ - type: precision_at_3
455
+ value: 15.443000000000001
456
+ - type: precision_at_5
457
+ value: 10.644
458
+ - type: recall_at_1
459
+ value: 27.424
460
+ - type: recall_at_10
461
+ value: 55.364000000000004
462
+ - type: recall_at_100
463
+ value: 78.211
464
+ - type: recall_at_1000
465
+ value: 91.74600000000001
466
+ - type: recall_at_3
467
+ value: 41.379
468
+ - type: recall_at_5
469
+ value: 47.14
470
+ - type: map_at_1
471
+ value: 19.601
472
+ - type: map_at_10
473
+ value: 27.826
474
+ - type: map_at_100
475
+ value: 29.017
476
+ - type: map_at_1000
477
+ value: 29.137
478
+ - type: map_at_3
479
+ value: 25.125999999999998
480
+ - type: map_at_5
481
+ value: 26.765
482
+ - type: mrr_at_1
483
+ value: 24.005000000000003
484
+ - type: mrr_at_10
485
+ value: 32.716
486
+ - type: mrr_at_100
487
+ value: 33.631
488
+ - type: mrr_at_1000
489
+ value: 33.694
490
+ - type: mrr_at_3
491
+ value: 29.934
492
+ - type: mrr_at_5
493
+ value: 31.630999999999997
494
+ - type: ndcg_at_1
495
+ value: 24.005000000000003
496
+ - type: ndcg_at_10
497
+ value: 33.158
498
+ - type: ndcg_at_100
499
+ value: 38.739000000000004
500
+ - type: ndcg_at_1000
501
+ value: 41.495
502
+ - type: ndcg_at_3
503
+ value: 28.185
504
+ - type: ndcg_at_5
505
+ value: 30.796
506
+ - type: precision_at_1
507
+ value: 24.005000000000003
508
+ - type: precision_at_10
509
+ value: 5.908
510
+ - type: precision_at_100
511
+ value: 1.005
512
+ - type: precision_at_1000
513
+ value: 0.13899999999999998
514
+ - type: precision_at_3
515
+ value: 13.391
516
+ - type: precision_at_5
517
+ value: 9.876
518
+ - type: recall_at_1
519
+ value: 19.601
520
+ - type: recall_at_10
521
+ value: 44.746
522
+ - type: recall_at_100
523
+ value: 68.82300000000001
524
+ - type: recall_at_1000
525
+ value: 88.215
526
+ - type: recall_at_3
527
+ value: 31.239
528
+ - type: recall_at_5
529
+ value: 37.695
530
+ - type: map_at_1
531
+ value: 30.130000000000003
532
+ - type: map_at_10
533
+ value: 40.96
534
+ - type: map_at_100
535
+ value: 42.282
536
+ - type: map_at_1000
537
+ value: 42.392
538
+ - type: map_at_3
539
+ value: 37.889
540
+ - type: map_at_5
541
+ value: 39.661
542
+ - type: mrr_at_1
543
+ value: 36.958999999999996
544
+ - type: mrr_at_10
545
+ value: 46.835
546
+ - type: mrr_at_100
547
+ value: 47.644
548
+ - type: mrr_at_1000
549
+ value: 47.688
550
+ - type: mrr_at_3
551
+ value: 44.562000000000005
552
+ - type: mrr_at_5
553
+ value: 45.938
554
+ - type: ndcg_at_1
555
+ value: 36.958999999999996
556
+ - type: ndcg_at_10
557
+ value: 47.06
558
+ - type: ndcg_at_100
559
+ value: 52.345
560
+ - type: ndcg_at_1000
561
+ value: 54.35
562
+ - type: ndcg_at_3
563
+ value: 42.301
564
+ - type: ndcg_at_5
565
+ value: 44.635999999999996
566
+ - type: precision_at_1
567
+ value: 36.958999999999996
568
+ - type: precision_at_10
569
+ value: 8.479000000000001
570
+ - type: precision_at_100
571
+ value: 1.284
572
+ - type: precision_at_1000
573
+ value: 0.163
574
+ - type: precision_at_3
575
+ value: 20.244
576
+ - type: precision_at_5
577
+ value: 14.224999999999998
578
+ - type: recall_at_1
579
+ value: 30.130000000000003
580
+ - type: recall_at_10
581
+ value: 59.27
582
+ - type: recall_at_100
583
+ value: 81.195
584
+ - type: recall_at_1000
585
+ value: 94.21199999999999
586
+ - type: recall_at_3
587
+ value: 45.885
588
+ - type: recall_at_5
589
+ value: 52.016
590
+ - type: map_at_1
591
+ value: 26.169999999999998
592
+ - type: map_at_10
593
+ value: 36.451
594
+ - type: map_at_100
595
+ value: 37.791000000000004
596
+ - type: map_at_1000
597
+ value: 37.897
598
+ - type: map_at_3
599
+ value: 33.109
600
+ - type: map_at_5
601
+ value: 34.937000000000005
602
+ - type: mrr_at_1
603
+ value: 32.877
604
+ - type: mrr_at_10
605
+ value: 42.368
606
+ - type: mrr_at_100
607
+ value: 43.201
608
+ - type: mrr_at_1000
609
+ value: 43.259
610
+ - type: mrr_at_3
611
+ value: 39.763999999999996
612
+ - type: mrr_at_5
613
+ value: 41.260000000000005
614
+ - type: ndcg_at_1
615
+ value: 32.877
616
+ - type: ndcg_at_10
617
+ value: 42.659000000000006
618
+ - type: ndcg_at_100
619
+ value: 48.161
620
+ - type: ndcg_at_1000
621
+ value: 50.345
622
+ - type: ndcg_at_3
623
+ value: 37.302
624
+ - type: ndcg_at_5
625
+ value: 39.722
626
+ - type: precision_at_1
627
+ value: 32.877
628
+ - type: precision_at_10
629
+ value: 7.9
630
+ - type: precision_at_100
631
+ value: 1.236
632
+ - type: precision_at_1000
633
+ value: 0.158
634
+ - type: precision_at_3
635
+ value: 17.846
636
+ - type: precision_at_5
637
+ value: 12.9
638
+ - type: recall_at_1
639
+ value: 26.169999999999998
640
+ - type: recall_at_10
641
+ value: 55.35
642
+ - type: recall_at_100
643
+ value: 78.755
644
+ - type: recall_at_1000
645
+ value: 93.518
646
+ - type: recall_at_3
647
+ value: 40.176
648
+ - type: recall_at_5
649
+ value: 46.589000000000006
650
+ - type: map_at_1
651
+ value: 27.15516666666667
652
+ - type: map_at_10
653
+ value: 36.65741666666667
654
+ - type: map_at_100
655
+ value: 37.84991666666666
656
+ - type: map_at_1000
657
+ value: 37.96316666666667
658
+ - type: map_at_3
659
+ value: 33.74974999999999
660
+ - type: map_at_5
661
+ value: 35.3765
662
+ - type: mrr_at_1
663
+ value: 32.08233333333334
664
+ - type: mrr_at_10
665
+ value: 41.033833333333334
666
+ - type: mrr_at_100
667
+ value: 41.84524999999999
668
+ - type: mrr_at_1000
669
+ value: 41.89983333333333
670
+ - type: mrr_at_3
671
+ value: 38.62008333333333
672
+ - type: mrr_at_5
673
+ value: 40.03441666666666
674
+ - type: ndcg_at_1
675
+ value: 32.08233333333334
676
+ - type: ndcg_at_10
677
+ value: 42.229
678
+ - type: ndcg_at_100
679
+ value: 47.26716666666667
680
+ - type: ndcg_at_1000
681
+ value: 49.43466666666667
682
+ - type: ndcg_at_3
683
+ value: 37.36408333333333
684
+ - type: ndcg_at_5
685
+ value: 39.6715
686
+ - type: precision_at_1
687
+ value: 32.08233333333334
688
+ - type: precision_at_10
689
+ value: 7.382583333333334
690
+ - type: precision_at_100
691
+ value: 1.16625
692
+ - type: precision_at_1000
693
+ value: 0.15408333333333332
694
+ - type: precision_at_3
695
+ value: 17.218
696
+ - type: precision_at_5
697
+ value: 12.21875
698
+ - type: recall_at_1
699
+ value: 27.15516666666667
700
+ - type: recall_at_10
701
+ value: 54.36683333333333
702
+ - type: recall_at_100
703
+ value: 76.37183333333333
704
+ - type: recall_at_1000
705
+ value: 91.26183333333333
706
+ - type: recall_at_3
707
+ value: 40.769916666666674
708
+ - type: recall_at_5
709
+ value: 46.702333333333335
710
+ - type: map_at_1
711
+ value: 25.749
712
+ - type: map_at_10
713
+ value: 33.001999999999995
714
+ - type: map_at_100
715
+ value: 33.891
716
+ - type: map_at_1000
717
+ value: 33.993
718
+ - type: map_at_3
719
+ value: 30.703999999999997
720
+ - type: map_at_5
721
+ value: 31.959
722
+ - type: mrr_at_1
723
+ value: 28.834
724
+ - type: mrr_at_10
725
+ value: 35.955
726
+ - type: mrr_at_100
727
+ value: 36.709
728
+ - type: mrr_at_1000
729
+ value: 36.779
730
+ - type: mrr_at_3
731
+ value: 33.947
732
+ - type: mrr_at_5
733
+ value: 35.089
734
+ - type: ndcg_at_1
735
+ value: 28.834
736
+ - type: ndcg_at_10
737
+ value: 37.329
738
+ - type: ndcg_at_100
739
+ value: 41.79
740
+ - type: ndcg_at_1000
741
+ value: 44.169000000000004
742
+ - type: ndcg_at_3
743
+ value: 33.184999999999995
744
+ - type: ndcg_at_5
745
+ value: 35.107
746
+ - type: precision_at_1
747
+ value: 28.834
748
+ - type: precision_at_10
749
+ value: 5.7669999999999995
750
+ - type: precision_at_100
751
+ value: 0.876
752
+ - type: precision_at_1000
753
+ value: 0.11399999999999999
754
+ - type: precision_at_3
755
+ value: 14.213000000000001
756
+ - type: precision_at_5
757
+ value: 9.754999999999999
758
+ - type: recall_at_1
759
+ value: 25.749
760
+ - type: recall_at_10
761
+ value: 47.791
762
+ - type: recall_at_100
763
+ value: 68.255
764
+ - type: recall_at_1000
765
+ value: 85.749
766
+ - type: recall_at_3
767
+ value: 36.199
768
+ - type: recall_at_5
769
+ value: 41.071999999999996
770
+ - type: map_at_1
771
+ value: 17.777
772
+ - type: map_at_10
773
+ value: 25.201
774
+ - type: map_at_100
775
+ value: 26.423999999999996
776
+ - type: map_at_1000
777
+ value: 26.544
778
+ - type: map_at_3
779
+ value: 22.869
780
+ - type: map_at_5
781
+ value: 24.023
782
+ - type: mrr_at_1
783
+ value: 21.473
784
+ - type: mrr_at_10
785
+ value: 29.12
786
+ - type: mrr_at_100
787
+ value: 30.144
788
+ - type: mrr_at_1000
789
+ value: 30.215999999999998
790
+ - type: mrr_at_3
791
+ value: 26.933
792
+ - type: mrr_at_5
793
+ value: 28.051
794
+ - type: ndcg_at_1
795
+ value: 21.473
796
+ - type: ndcg_at_10
797
+ value: 30.003
798
+ - type: ndcg_at_100
799
+ value: 35.766
800
+ - type: ndcg_at_1000
801
+ value: 38.501000000000005
802
+ - type: ndcg_at_3
803
+ value: 25.773000000000003
804
+ - type: ndcg_at_5
805
+ value: 27.462999999999997
806
+ - type: precision_at_1
807
+ value: 21.473
808
+ - type: precision_at_10
809
+ value: 5.482
810
+ - type: precision_at_100
811
+ value: 0.975
812
+ - type: precision_at_1000
813
+ value: 0.13799999999999998
814
+ - type: precision_at_3
815
+ value: 12.205
816
+ - type: precision_at_5
817
+ value: 8.692
818
+ - type: recall_at_1
819
+ value: 17.777
820
+ - type: recall_at_10
821
+ value: 40.582
822
+ - type: recall_at_100
823
+ value: 66.305
824
+ - type: recall_at_1000
825
+ value: 85.636
826
+ - type: recall_at_3
827
+ value: 28.687
828
+ - type: recall_at_5
829
+ value: 33.089
830
+ - type: map_at_1
831
+ value: 26.677
832
+ - type: map_at_10
833
+ value: 36.309000000000005
834
+ - type: map_at_100
835
+ value: 37.403999999999996
836
+ - type: map_at_1000
837
+ value: 37.496
838
+ - type: map_at_3
839
+ value: 33.382
840
+ - type: map_at_5
841
+ value: 34.98
842
+ - type: mrr_at_1
843
+ value: 31.343
844
+ - type: mrr_at_10
845
+ value: 40.549
846
+ - type: mrr_at_100
847
+ value: 41.342
848
+ - type: mrr_at_1000
849
+ value: 41.397
850
+ - type: mrr_at_3
851
+ value: 38.029
852
+ - type: mrr_at_5
853
+ value: 39.451
854
+ - type: ndcg_at_1
855
+ value: 31.343
856
+ - type: ndcg_at_10
857
+ value: 42.1
858
+ - type: ndcg_at_100
859
+ value: 47.089999999999996
860
+ - type: ndcg_at_1000
861
+ value: 49.222
862
+ - type: ndcg_at_3
863
+ value: 36.836999999999996
864
+ - type: ndcg_at_5
865
+ value: 39.21
866
+ - type: precision_at_1
867
+ value: 31.343
868
+ - type: precision_at_10
869
+ value: 7.164
870
+ - type: precision_at_100
871
+ value: 1.0959999999999999
872
+ - type: precision_at_1000
873
+ value: 0.13899999999999998
874
+ - type: precision_at_3
875
+ value: 16.915
876
+ - type: precision_at_5
877
+ value: 11.940000000000001
878
+ - type: recall_at_1
879
+ value: 26.677
880
+ - type: recall_at_10
881
+ value: 55.54599999999999
882
+ - type: recall_at_100
883
+ value: 77.094
884
+ - type: recall_at_1000
885
+ value: 92.01
886
+ - type: recall_at_3
887
+ value: 41.191
888
+ - type: recall_at_5
889
+ value: 47.006
890
+ - type: map_at_1
891
+ value: 24.501
892
+ - type: map_at_10
893
+ value: 33.102
894
+ - type: map_at_100
895
+ value: 34.676
896
+ - type: map_at_1000
897
+ value: 34.888000000000005
898
+ - type: map_at_3
899
+ value: 29.944
900
+ - type: map_at_5
901
+ value: 31.613999999999997
902
+ - type: mrr_at_1
903
+ value: 29.447000000000003
904
+ - type: mrr_at_10
905
+ value: 37.996
906
+ - type: mrr_at_100
907
+ value: 38.946
908
+ - type: mrr_at_1000
909
+ value: 38.995000000000005
910
+ - type: mrr_at_3
911
+ value: 35.079
912
+ - type: mrr_at_5
913
+ value: 36.69
914
+ - type: ndcg_at_1
915
+ value: 29.447000000000003
916
+ - type: ndcg_at_10
917
+ value: 39.232
918
+ - type: ndcg_at_100
919
+ value: 45.247
920
+ - type: ndcg_at_1000
921
+ value: 47.613
922
+ - type: ndcg_at_3
923
+ value: 33.922999999999995
924
+ - type: ndcg_at_5
925
+ value: 36.284
926
+ - type: precision_at_1
927
+ value: 29.447000000000003
928
+ - type: precision_at_10
929
+ value: 7.648000000000001
930
+ - type: precision_at_100
931
+ value: 1.516
932
+ - type: precision_at_1000
933
+ value: 0.23900000000000002
934
+ - type: precision_at_3
935
+ value: 16.008
936
+ - type: precision_at_5
937
+ value: 11.779
938
+ - type: recall_at_1
939
+ value: 24.501
940
+ - type: recall_at_10
941
+ value: 51.18899999999999
942
+ - type: recall_at_100
943
+ value: 78.437
944
+ - type: recall_at_1000
945
+ value: 92.842
946
+ - type: recall_at_3
947
+ value: 35.808
948
+ - type: recall_at_5
949
+ value: 42.197
950
+ - type: map_at_1
951
+ value: 22.039
952
+ - type: map_at_10
953
+ value: 30.377
954
+ - type: map_at_100
955
+ value: 31.275
956
+ - type: map_at_1000
957
+ value: 31.379
958
+ - type: map_at_3
959
+ value: 27.98
960
+ - type: map_at_5
961
+ value: 29.358
962
+ - type: mrr_at_1
963
+ value: 24.03
964
+ - type: mrr_at_10
965
+ value: 32.568000000000005
966
+ - type: mrr_at_100
967
+ value: 33.403
968
+ - type: mrr_at_1000
969
+ value: 33.475
970
+ - type: mrr_at_3
971
+ value: 30.436999999999998
972
+ - type: mrr_at_5
973
+ value: 31.796000000000003
974
+ - type: ndcg_at_1
975
+ value: 24.03
976
+ - type: ndcg_at_10
977
+ value: 35.198
978
+ - type: ndcg_at_100
979
+ value: 39.668
980
+ - type: ndcg_at_1000
981
+ value: 42.296
982
+ - type: ndcg_at_3
983
+ value: 30.709999999999997
984
+ - type: ndcg_at_5
985
+ value: 33.024
986
+ - type: precision_at_1
987
+ value: 24.03
988
+ - type: precision_at_10
989
+ value: 5.564
990
+ - type: precision_at_100
991
+ value: 0.828
992
+ - type: precision_at_1000
993
+ value: 0.117
994
+ - type: precision_at_3
995
+ value: 13.309000000000001
996
+ - type: precision_at_5
997
+ value: 9.39
998
+ - type: recall_at_1
999
+ value: 22.039
1000
+ - type: recall_at_10
1001
+ value: 47.746
1002
+ - type: recall_at_100
1003
+ value: 68.23599999999999
1004
+ - type: recall_at_1000
1005
+ value: 87.852
1006
+ - type: recall_at_3
1007
+ value: 35.852000000000004
1008
+ - type: recall_at_5
1009
+ value: 41.410000000000004
1010
+ - task:
1011
+ type: Retrieval
1012
+ dataset:
1013
+ name: MTEB ClimateFEVER
1014
+ type: climate-fever
1015
+ config: default
1016
+ split: test
1017
+ revision: None
1018
+ metrics:
1019
+ - type: map_at_1
1020
+ value: 15.692999999999998
1021
+ - type: map_at_10
1022
+ value: 26.903
1023
+ - type: map_at_100
1024
+ value: 28.987000000000002
1025
+ - type: map_at_1000
1026
+ value: 29.176999999999996
1027
+ - type: map_at_3
1028
+ value: 22.137
1029
+ - type: map_at_5
1030
+ value: 24.758
1031
+ - type: mrr_at_1
1032
+ value: 35.57
1033
+ - type: mrr_at_10
1034
+ value: 47.821999999999996
1035
+ - type: mrr_at_100
1036
+ value: 48.608000000000004
1037
+ - type: mrr_at_1000
1038
+ value: 48.638999999999996
1039
+ - type: mrr_at_3
1040
+ value: 44.452000000000005
1041
+ - type: mrr_at_5
1042
+ value: 46.546
1043
+ - type: ndcg_at_1
1044
+ value: 35.57
1045
+ - type: ndcg_at_10
1046
+ value: 36.567
1047
+ - type: ndcg_at_100
1048
+ value: 44.085
1049
+ - type: ndcg_at_1000
1050
+ value: 47.24
1051
+ - type: ndcg_at_3
1052
+ value: 29.964000000000002
1053
+ - type: ndcg_at_5
1054
+ value: 32.511
1055
+ - type: precision_at_1
1056
+ value: 35.57
1057
+ - type: precision_at_10
1058
+ value: 11.485
1059
+ - type: precision_at_100
1060
+ value: 1.9619999999999997
1061
+ - type: precision_at_1000
1062
+ value: 0.256
1063
+ - type: precision_at_3
1064
+ value: 22.237000000000002
1065
+ - type: precision_at_5
1066
+ value: 17.471999999999998
1067
+ - type: recall_at_1
1068
+ value: 15.692999999999998
1069
+ - type: recall_at_10
1070
+ value: 43.056
1071
+ - type: recall_at_100
1072
+ value: 68.628
1073
+ - type: recall_at_1000
1074
+ value: 86.075
1075
+ - type: recall_at_3
1076
+ value: 26.918999999999997
1077
+ - type: recall_at_5
1078
+ value: 34.14
1079
+ - task:
1080
+ type: Retrieval
1081
+ dataset:
1082
+ name: MTEB DBPedia
1083
+ type: dbpedia-entity
1084
+ config: default
1085
+ split: test
1086
+ revision: None
1087
+ metrics:
1088
+ - type: map_at_1
1089
+ value: 9.53
1090
+ - type: map_at_10
1091
+ value: 20.951
1092
+ - type: map_at_100
1093
+ value: 30.136000000000003
1094
+ - type: map_at_1000
1095
+ value: 31.801000000000002
1096
+ - type: map_at_3
1097
+ value: 15.021
1098
+ - type: map_at_5
1099
+ value: 17.471999999999998
1100
+ - type: mrr_at_1
1101
+ value: 71.0
1102
+ - type: mrr_at_10
1103
+ value: 79.176
1104
+ - type: mrr_at_100
1105
+ value: 79.418
1106
+ - type: mrr_at_1000
1107
+ value: 79.426
1108
+ - type: mrr_at_3
1109
+ value: 78.125
1110
+ - type: mrr_at_5
1111
+ value: 78.61200000000001
1112
+ - type: ndcg_at_1
1113
+ value: 58.5
1114
+ - type: ndcg_at_10
1115
+ value: 44.106
1116
+ - type: ndcg_at_100
1117
+ value: 49.268
1118
+ - type: ndcg_at_1000
1119
+ value: 56.711999999999996
1120
+ - type: ndcg_at_3
1121
+ value: 48.934
1122
+ - type: ndcg_at_5
1123
+ value: 45.826
1124
+ - type: precision_at_1
1125
+ value: 71.0
1126
+ - type: precision_at_10
1127
+ value: 35.0
1128
+ - type: precision_at_100
1129
+ value: 11.360000000000001
1130
+ - type: precision_at_1000
1131
+ value: 2.046
1132
+ - type: precision_at_3
1133
+ value: 52.833
1134
+ - type: precision_at_5
1135
+ value: 44.15
1136
+ - type: recall_at_1
1137
+ value: 9.53
1138
+ - type: recall_at_10
1139
+ value: 26.811
1140
+ - type: recall_at_100
1141
+ value: 55.916999999999994
1142
+ - type: recall_at_1000
1143
+ value: 79.973
1144
+ - type: recall_at_3
1145
+ value: 16.413
1146
+ - type: recall_at_5
1147
+ value: 19.980999999999998
1148
+ - task:
1149
+ type: Classification
1150
+ dataset:
1151
+ name: MTEB EmotionClassification
1152
+ type: mteb/emotion
1153
+ config: default
1154
+ split: test
1155
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1156
+ metrics:
1157
+ - type: accuracy
1158
+ value: 51.519999999999996
1159
+ - type: f1
1160
+ value: 46.36601294761231
1161
+ - task:
1162
+ type: Retrieval
1163
+ dataset:
1164
+ name: MTEB FEVER
1165
+ type: fever
1166
+ config: default
1167
+ split: test
1168
+ revision: None
1169
+ metrics:
1170
+ - type: map_at_1
1171
+ value: 74.413
1172
+ - type: map_at_10
1173
+ value: 83.414
1174
+ - type: map_at_100
1175
+ value: 83.621
1176
+ - type: map_at_1000
1177
+ value: 83.635
1178
+ - type: map_at_3
1179
+ value: 82.337
1180
+ - type: map_at_5
1181
+ value: 83.039
1182
+ - type: mrr_at_1
1183
+ value: 80.19800000000001
1184
+ - type: mrr_at_10
1185
+ value: 87.715
1186
+ - type: mrr_at_100
1187
+ value: 87.778
1188
+ - type: mrr_at_1000
1189
+ value: 87.779
1190
+ - type: mrr_at_3
1191
+ value: 87.106
1192
+ - type: mrr_at_5
1193
+ value: 87.555
1194
+ - type: ndcg_at_1
1195
+ value: 80.19800000000001
1196
+ - type: ndcg_at_10
1197
+ value: 87.182
1198
+ - type: ndcg_at_100
1199
+ value: 87.90299999999999
1200
+ - type: ndcg_at_1000
1201
+ value: 88.143
1202
+ - type: ndcg_at_3
1203
+ value: 85.60600000000001
1204
+ - type: ndcg_at_5
1205
+ value: 86.541
1206
+ - type: precision_at_1
1207
+ value: 80.19800000000001
1208
+ - type: precision_at_10
1209
+ value: 10.531
1210
+ - type: precision_at_100
1211
+ value: 1.113
1212
+ - type: precision_at_1000
1213
+ value: 0.11499999999999999
1214
+ - type: precision_at_3
1215
+ value: 32.933
1216
+ - type: precision_at_5
1217
+ value: 20.429
1218
+ - type: recall_at_1
1219
+ value: 74.413
1220
+ - type: recall_at_10
1221
+ value: 94.363
1222
+ - type: recall_at_100
1223
+ value: 97.165
1224
+ - type: recall_at_1000
1225
+ value: 98.668
1226
+ - type: recall_at_3
1227
+ value: 90.108
1228
+ - type: recall_at_5
1229
+ value: 92.52
1230
+ - task:
1231
+ type: Retrieval
1232
+ dataset:
1233
+ name: MTEB FiQA2018
1234
+ type: fiqa
1235
+ config: default
1236
+ split: test
1237
+ revision: None
1238
+ metrics:
1239
+ - type: map_at_1
1240
+ value: 22.701
1241
+ - type: map_at_10
1242
+ value: 37.122
1243
+ - type: map_at_100
1244
+ value: 39.178000000000004
1245
+ - type: map_at_1000
1246
+ value: 39.326
1247
+ - type: map_at_3
1248
+ value: 32.971000000000004
1249
+ - type: map_at_5
1250
+ value: 35.332
1251
+ - type: mrr_at_1
1252
+ value: 44.753
1253
+ - type: mrr_at_10
1254
+ value: 53.452
1255
+ - type: mrr_at_100
1256
+ value: 54.198
1257
+ - type: mrr_at_1000
1258
+ value: 54.225
1259
+ - type: mrr_at_3
1260
+ value: 50.952
1261
+ - type: mrr_at_5
1262
+ value: 52.464
1263
+ - type: ndcg_at_1
1264
+ value: 44.753
1265
+ - type: ndcg_at_10
1266
+ value: 45.021
1267
+ - type: ndcg_at_100
1268
+ value: 52.028
1269
+ - type: ndcg_at_1000
1270
+ value: 54.596000000000004
1271
+ - type: ndcg_at_3
1272
+ value: 41.622
1273
+ - type: ndcg_at_5
1274
+ value: 42.736000000000004
1275
+ - type: precision_at_1
1276
+ value: 44.753
1277
+ - type: precision_at_10
1278
+ value: 12.284
1279
+ - type: precision_at_100
1280
+ value: 1.955
1281
+ - type: precision_at_1000
1282
+ value: 0.243
1283
+ - type: precision_at_3
1284
+ value: 27.828999999999997
1285
+ - type: precision_at_5
1286
+ value: 20.061999999999998
1287
+ - type: recall_at_1
1288
+ value: 22.701
1289
+ - type: recall_at_10
1290
+ value: 51.432
1291
+ - type: recall_at_100
1292
+ value: 77.009
1293
+ - type: recall_at_1000
1294
+ value: 92.511
1295
+ - type: recall_at_3
1296
+ value: 37.919000000000004
1297
+ - type: recall_at_5
1298
+ value: 44.131
1299
+ - task:
1300
+ type: Retrieval
1301
+ dataset:
1302
+ name: MTEB HotpotQA
1303
+ type: hotpotqa
1304
+ config: default
1305
+ split: test
1306
+ revision: None
1307
+ metrics:
1308
+ - type: map_at_1
1309
+ value: 40.189
1310
+ - type: map_at_10
1311
+ value: 66.24600000000001
1312
+ - type: map_at_100
1313
+ value: 67.098
1314
+ - type: map_at_1000
1315
+ value: 67.149
1316
+ - type: map_at_3
1317
+ value: 62.684
1318
+ - type: map_at_5
1319
+ value: 64.974
1320
+ - type: mrr_at_1
1321
+ value: 80.378
1322
+ - type: mrr_at_10
1323
+ value: 86.127
1324
+ - type: mrr_at_100
1325
+ value: 86.29299999999999
1326
+ - type: mrr_at_1000
1327
+ value: 86.297
1328
+ - type: mrr_at_3
1329
+ value: 85.31400000000001
1330
+ - type: mrr_at_5
1331
+ value: 85.858
1332
+ - type: ndcg_at_1
1333
+ value: 80.378
1334
+ - type: ndcg_at_10
1335
+ value: 74.101
1336
+ - type: ndcg_at_100
1337
+ value: 76.993
1338
+ - type: ndcg_at_1000
1339
+ value: 77.948
1340
+ - type: ndcg_at_3
1341
+ value: 69.232
1342
+ - type: ndcg_at_5
1343
+ value: 72.04599999999999
1344
+ - type: precision_at_1
1345
+ value: 80.378
1346
+ - type: precision_at_10
1347
+ value: 15.595999999999998
1348
+ - type: precision_at_100
1349
+ value: 1.7840000000000003
1350
+ - type: precision_at_1000
1351
+ value: 0.191
1352
+ - type: precision_at_3
1353
+ value: 44.884
1354
+ - type: precision_at_5
1355
+ value: 29.145
1356
+ - type: recall_at_1
1357
+ value: 40.189
1358
+ - type: recall_at_10
1359
+ value: 77.981
1360
+ - type: recall_at_100
1361
+ value: 89.21
1362
+ - type: recall_at_1000
1363
+ value: 95.48299999999999
1364
+ - type: recall_at_3
1365
+ value: 67.326
1366
+ - type: recall_at_5
1367
+ value: 72.863
1368
+ - task:
1369
+ type: Classification
1370
+ dataset:
1371
+ name: MTEB ImdbClassification
1372
+ type: mteb/imdb
1373
+ config: default
1374
+ split: test
1375
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1376
+ metrics:
1377
+ - type: accuracy
1378
+ value: 92.84599999999999
1379
+ - type: ap
1380
+ value: 89.4710787567357
1381
+ - type: f1
1382
+ value: 92.83752676932258
1383
+ - task:
1384
+ type: Retrieval
1385
+ dataset:
1386
+ name: MTEB MSMARCO
1387
+ type: msmarco
1388
+ config: default
1389
+ split: dev
1390
+ revision: None
1391
+ metrics:
1392
+ - type: map_at_1
1393
+ value: 23.132
1394
+ - type: map_at_10
1395
+ value: 35.543
1396
+ - type: map_at_100
1397
+ value: 36.702
1398
+ - type: map_at_1000
1399
+ value: 36.748999999999995
1400
+ - type: map_at_3
1401
+ value: 31.737
1402
+ - type: map_at_5
1403
+ value: 33.927
1404
+ - type: mrr_at_1
1405
+ value: 23.782
1406
+ - type: mrr_at_10
1407
+ value: 36.204
1408
+ - type: mrr_at_100
1409
+ value: 37.29
1410
+ - type: mrr_at_1000
1411
+ value: 37.330999999999996
1412
+ - type: mrr_at_3
1413
+ value: 32.458999999999996
1414
+ - type: mrr_at_5
1415
+ value: 34.631
1416
+ - type: ndcg_at_1
1417
+ value: 23.782
1418
+ - type: ndcg_at_10
1419
+ value: 42.492999999999995
1420
+ - type: ndcg_at_100
1421
+ value: 47.985
1422
+ - type: ndcg_at_1000
1423
+ value: 49.141
1424
+ - type: ndcg_at_3
1425
+ value: 34.748000000000005
1426
+ - type: ndcg_at_5
1427
+ value: 38.651
1428
+ - type: precision_at_1
1429
+ value: 23.782
1430
+ - type: precision_at_10
1431
+ value: 6.665
1432
+ - type: precision_at_100
1433
+ value: 0.941
1434
+ - type: precision_at_1000
1435
+ value: 0.104
1436
+ - type: precision_at_3
1437
+ value: 14.776
1438
+ - type: precision_at_5
1439
+ value: 10.84
1440
+ - type: recall_at_1
1441
+ value: 23.132
1442
+ - type: recall_at_10
1443
+ value: 63.794
1444
+ - type: recall_at_100
1445
+ value: 89.027
1446
+ - type: recall_at_1000
1447
+ value: 97.807
1448
+ - type: recall_at_3
1449
+ value: 42.765
1450
+ - type: recall_at_5
1451
+ value: 52.11
1452
+ - task:
1453
+ type: Classification
1454
+ dataset:
1455
+ name: MTEB MTOPDomainClassification (en)
1456
+ type: mteb/mtop_domain
1457
+ config: en
1458
+ split: test
1459
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1460
+ metrics:
1461
+ - type: accuracy
1462
+ value: 94.59188326493388
1463
+ - type: f1
1464
+ value: 94.3842594786827
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ name: MTEB MTOPIntentClassification (en)
1469
+ type: mteb/mtop_intent
1470
+ config: en
1471
+ split: test
1472
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 79.49384404924761
1476
+ - type: f1
1477
+ value: 59.7580539534629
1478
+ - task:
1479
+ type: Classification
1480
+ dataset:
1481
+ name: MTEB MassiveIntentClassification (en)
1482
+ type: mteb/amazon_massive_intent
1483
+ config: en
1484
+ split: test
1485
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1486
+ metrics:
1487
+ - type: accuracy
1488
+ value: 77.56220578345663
1489
+ - type: f1
1490
+ value: 75.27228165561478
1491
+ - task:
1492
+ type: Classification
1493
+ dataset:
1494
+ name: MTEB MassiveScenarioClassification (en)
1495
+ type: mteb/amazon_massive_scenario
1496
+ config: en
1497
+ split: test
1498
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1499
+ metrics:
1500
+ - type: accuracy
1501
+ value: 80.53463349024884
1502
+ - type: f1
1503
+ value: 80.4893958236536
1504
+ - task:
1505
+ type: Clustering
1506
+ dataset:
1507
+ name: MTEB MedrxivClusteringP2P
1508
+ type: mteb/medrxiv-clustering-p2p
1509
+ config: default
1510
+ split: test
1511
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1512
+ metrics:
1513
+ - type: v_measure
1514
+ value: 32.56100273484962
1515
+ - task:
1516
+ type: Clustering
1517
+ dataset:
1518
+ name: MTEB MedrxivClusteringS2S
1519
+ type: mteb/medrxiv-clustering-s2s
1520
+ config: default
1521
+ split: test
1522
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1523
+ metrics:
1524
+ - type: v_measure
1525
+ value: 31.470380028839607
1526
+ - task:
1527
+ type: Reranking
1528
+ dataset:
1529
+ name: MTEB MindSmallReranking
1530
+ type: mteb/mind_small
1531
+ config: default
1532
+ split: test
1533
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1534
+ metrics:
1535
+ - type: map
1536
+ value: 32.06102792457849
1537
+ - type: mrr
1538
+ value: 33.30709199672238
1539
+ - task:
1540
+ type: Retrieval
1541
+ dataset:
1542
+ name: MTEB NFCorpus
1543
+ type: nfcorpus
1544
+ config: default
1545
+ split: test
1546
+ revision: None
1547
+ metrics:
1548
+ - type: map_at_1
1549
+ value: 6.776999999999999
1550
+ - type: map_at_10
1551
+ value: 14.924000000000001
1552
+ - type: map_at_100
1553
+ value: 18.955
1554
+ - type: map_at_1000
1555
+ value: 20.538999999999998
1556
+ - type: map_at_3
1557
+ value: 10.982
1558
+ - type: map_at_5
1559
+ value: 12.679000000000002
1560
+ - type: mrr_at_1
1561
+ value: 47.988
1562
+ - type: mrr_at_10
1563
+ value: 57.232000000000006
1564
+ - type: mrr_at_100
1565
+ value: 57.818999999999996
1566
+ - type: mrr_at_1000
1567
+ value: 57.847
1568
+ - type: mrr_at_3
1569
+ value: 54.901999999999994
1570
+ - type: mrr_at_5
1571
+ value: 56.481
1572
+ - type: ndcg_at_1
1573
+ value: 46.594
1574
+ - type: ndcg_at_10
1575
+ value: 38.129000000000005
1576
+ - type: ndcg_at_100
1577
+ value: 35.54
1578
+ - type: ndcg_at_1000
1579
+ value: 44.172
1580
+ - type: ndcg_at_3
1581
+ value: 43.025999999999996
1582
+ - type: ndcg_at_5
1583
+ value: 41.052
1584
+ - type: precision_at_1
1585
+ value: 47.988
1586
+ - type: precision_at_10
1587
+ value: 28.111000000000004
1588
+ - type: precision_at_100
1589
+ value: 8.929
1590
+ - type: precision_at_1000
1591
+ value: 2.185
1592
+ - type: precision_at_3
1593
+ value: 40.144000000000005
1594
+ - type: precision_at_5
1595
+ value: 35.232
1596
+ - type: recall_at_1
1597
+ value: 6.776999999999999
1598
+ - type: recall_at_10
1599
+ value: 19.289
1600
+ - type: recall_at_100
1601
+ value: 36.359
1602
+ - type: recall_at_1000
1603
+ value: 67.54
1604
+ - type: recall_at_3
1605
+ value: 11.869
1606
+ - type: recall_at_5
1607
+ value: 14.999
1608
+ - task:
1609
+ type: Retrieval
1610
+ dataset:
1611
+ name: MTEB NQ
1612
+ type: nq
1613
+ config: default
1614
+ split: test
1615
+ revision: None
1616
+ metrics:
1617
+ - type: map_at_1
1618
+ value: 31.108000000000004
1619
+ - type: map_at_10
1620
+ value: 47.126000000000005
1621
+ - type: map_at_100
1622
+ value: 48.171
1623
+ - type: map_at_1000
1624
+ value: 48.199
1625
+ - type: map_at_3
1626
+ value: 42.734
1627
+ - type: map_at_5
1628
+ value: 45.362
1629
+ - type: mrr_at_1
1630
+ value: 34.936
1631
+ - type: mrr_at_10
1632
+ value: 49.571
1633
+ - type: mrr_at_100
1634
+ value: 50.345
1635
+ - type: mrr_at_1000
1636
+ value: 50.363
1637
+ - type: mrr_at_3
1638
+ value: 45.959
1639
+ - type: mrr_at_5
1640
+ value: 48.165
1641
+ - type: ndcg_at_1
1642
+ value: 34.936
1643
+ - type: ndcg_at_10
1644
+ value: 55.028999999999996
1645
+ - type: ndcg_at_100
1646
+ value: 59.244
1647
+ - type: ndcg_at_1000
1648
+ value: 59.861
1649
+ - type: ndcg_at_3
1650
+ value: 46.872
1651
+ - type: ndcg_at_5
1652
+ value: 51.217999999999996
1653
+ - type: precision_at_1
1654
+ value: 34.936
1655
+ - type: precision_at_10
1656
+ value: 9.099
1657
+ - type: precision_at_100
1658
+ value: 1.145
1659
+ - type: precision_at_1000
1660
+ value: 0.12
1661
+ - type: precision_at_3
1662
+ value: 21.456
1663
+ - type: precision_at_5
1664
+ value: 15.411
1665
+ - type: recall_at_1
1666
+ value: 31.108000000000004
1667
+ - type: recall_at_10
1668
+ value: 76.53999999999999
1669
+ - type: recall_at_100
1670
+ value: 94.39
1671
+ - type: recall_at_1000
1672
+ value: 98.947
1673
+ - type: recall_at_3
1674
+ value: 55.572
1675
+ - type: recall_at_5
1676
+ value: 65.525
1677
+ - task:
1678
+ type: Retrieval
1679
+ dataset:
1680
+ name: MTEB QuoraRetrieval
1681
+ type: quora
1682
+ config: default
1683
+ split: test
1684
+ revision: None
1685
+ metrics:
1686
+ - type: map_at_1
1687
+ value: 71.56400000000001
1688
+ - type: map_at_10
1689
+ value: 85.482
1690
+ - type: map_at_100
1691
+ value: 86.114
1692
+ - type: map_at_1000
1693
+ value: 86.13
1694
+ - type: map_at_3
1695
+ value: 82.607
1696
+ - type: map_at_5
1697
+ value: 84.405
1698
+ - type: mrr_at_1
1699
+ value: 82.42
1700
+ - type: mrr_at_10
1701
+ value: 88.304
1702
+ - type: mrr_at_100
1703
+ value: 88.399
1704
+ - type: mrr_at_1000
1705
+ value: 88.399
1706
+ - type: mrr_at_3
1707
+ value: 87.37
1708
+ - type: mrr_at_5
1709
+ value: 88.024
1710
+ - type: ndcg_at_1
1711
+ value: 82.45
1712
+ - type: ndcg_at_10
1713
+ value: 89.06500000000001
1714
+ - type: ndcg_at_100
1715
+ value: 90.232
1716
+ - type: ndcg_at_1000
1717
+ value: 90.305
1718
+ - type: ndcg_at_3
1719
+ value: 86.375
1720
+ - type: ndcg_at_5
1721
+ value: 87.85300000000001
1722
+ - type: precision_at_1
1723
+ value: 82.45
1724
+ - type: precision_at_10
1725
+ value: 13.486999999999998
1726
+ - type: precision_at_100
1727
+ value: 1.534
1728
+ - type: precision_at_1000
1729
+ value: 0.157
1730
+ - type: precision_at_3
1731
+ value: 37.813
1732
+ - type: precision_at_5
1733
+ value: 24.773999999999997
1734
+ - type: recall_at_1
1735
+ value: 71.56400000000001
1736
+ - type: recall_at_10
1737
+ value: 95.812
1738
+ - type: recall_at_100
1739
+ value: 99.7
1740
+ - type: recall_at_1000
1741
+ value: 99.979
1742
+ - type: recall_at_3
1743
+ value: 87.966
1744
+ - type: recall_at_5
1745
+ value: 92.268
1746
+ - task:
1747
+ type: Clustering
1748
+ dataset:
1749
+ name: MTEB RedditClustering
1750
+ type: mteb/reddit-clustering
1751
+ config: default
1752
+ split: test
1753
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1754
+ metrics:
1755
+ - type: v_measure
1756
+ value: 57.241876648614145
1757
+ - task:
1758
+ type: Clustering
1759
+ dataset:
1760
+ name: MTEB RedditClusteringP2P
1761
+ type: mteb/reddit-clustering-p2p
1762
+ config: default
1763
+ split: test
1764
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1765
+ metrics:
1766
+ - type: v_measure
1767
+ value: 64.66212576446223
1768
+ - task:
1769
+ type: Retrieval
1770
+ dataset:
1771
+ name: MTEB SCIDOCS
1772
+ type: scidocs
1773
+ config: default
1774
+ split: test
1775
+ revision: None
1776
+ metrics:
1777
+ - type: map_at_1
1778
+ value: 5.308
1779
+ - type: map_at_10
1780
+ value: 13.803
1781
+ - type: map_at_100
1782
+ value: 16.176
1783
+ - type: map_at_1000
1784
+ value: 16.561
1785
+ - type: map_at_3
1786
+ value: 9.761000000000001
1787
+ - type: map_at_5
1788
+ value: 11.802
1789
+ - type: mrr_at_1
1790
+ value: 26.200000000000003
1791
+ - type: mrr_at_10
1792
+ value: 37.621
1793
+ - type: mrr_at_100
1794
+ value: 38.767
1795
+ - type: mrr_at_1000
1796
+ value: 38.815
1797
+ - type: mrr_at_3
1798
+ value: 34.117
1799
+ - type: mrr_at_5
1800
+ value: 36.107
1801
+ - type: ndcg_at_1
1802
+ value: 26.200000000000003
1803
+ - type: ndcg_at_10
1804
+ value: 22.64
1805
+ - type: ndcg_at_100
1806
+ value: 31.567
1807
+ - type: ndcg_at_1000
1808
+ value: 37.623
1809
+ - type: ndcg_at_3
1810
+ value: 21.435000000000002
1811
+ - type: ndcg_at_5
1812
+ value: 18.87
1813
+ - type: precision_at_1
1814
+ value: 26.200000000000003
1815
+ - type: precision_at_10
1816
+ value: 11.74
1817
+ - type: precision_at_100
1818
+ value: 2.465
1819
+ - type: precision_at_1000
1820
+ value: 0.391
1821
+ - type: precision_at_3
1822
+ value: 20.033
1823
+ - type: precision_at_5
1824
+ value: 16.64
1825
+ - type: recall_at_1
1826
+ value: 5.308
1827
+ - type: recall_at_10
1828
+ value: 23.794999999999998
1829
+ - type: recall_at_100
1830
+ value: 50.015
1831
+ - type: recall_at_1000
1832
+ value: 79.283
1833
+ - type: recall_at_3
1834
+ value: 12.178
1835
+ - type: recall_at_5
1836
+ value: 16.882
1837
+ - task:
1838
+ type: STS
1839
+ dataset:
1840
+ name: MTEB SICK-R
1841
+ type: mteb/sickr-sts
1842
+ config: default
1843
+ split: test
1844
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1845
+ metrics:
1846
+ - type: cos_sim_pearson
1847
+ value: 84.93231134675553
1848
+ - type: cos_sim_spearman
1849
+ value: 81.68319292603205
1850
+ - type: euclidean_pearson
1851
+ value: 81.8396814380367
1852
+ - type: euclidean_spearman
1853
+ value: 81.24641903349945
1854
+ - type: manhattan_pearson
1855
+ value: 81.84698799204274
1856
+ - type: manhattan_spearman
1857
+ value: 81.24269997904105
1858
+ - task:
1859
+ type: STS
1860
+ dataset:
1861
+ name: MTEB STS12
1862
+ type: mteb/sts12-sts
1863
+ config: default
1864
+ split: test
1865
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1866
+ metrics:
1867
+ - type: cos_sim_pearson
1868
+ value: 86.73241671587446
1869
+ - type: cos_sim_spearman
1870
+ value: 79.05091082971826
1871
+ - type: euclidean_pearson
1872
+ value: 83.91146869578044
1873
+ - type: euclidean_spearman
1874
+ value: 79.87978465370936
1875
+ - type: manhattan_pearson
1876
+ value: 83.90888338917678
1877
+ - type: manhattan_spearman
1878
+ value: 79.87482848584241
1879
+ - task:
1880
+ type: STS
1881
+ dataset:
1882
+ name: MTEB STS13
1883
+ type: mteb/sts13-sts
1884
+ config: default
1885
+ split: test
1886
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1887
+ metrics:
1888
+ - type: cos_sim_pearson
1889
+ value: 85.14970731146177
1890
+ - type: cos_sim_spearman
1891
+ value: 86.37363490084627
1892
+ - type: euclidean_pearson
1893
+ value: 83.02154218530433
1894
+ - type: euclidean_spearman
1895
+ value: 83.80258761957367
1896
+ - type: manhattan_pearson
1897
+ value: 83.01664495119347
1898
+ - type: manhattan_spearman
1899
+ value: 83.77567458007952
1900
+ - task:
1901
+ type: STS
1902
+ dataset:
1903
+ name: MTEB STS14
1904
+ type: mteb/sts14-sts
1905
+ config: default
1906
+ split: test
1907
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1908
+ metrics:
1909
+ - type: cos_sim_pearson
1910
+ value: 83.40474139886784
1911
+ - type: cos_sim_spearman
1912
+ value: 82.77768789165984
1913
+ - type: euclidean_pearson
1914
+ value: 80.7065877443695
1915
+ - type: euclidean_spearman
1916
+ value: 81.375940662505
1917
+ - type: manhattan_pearson
1918
+ value: 80.6507552270278
1919
+ - type: manhattan_spearman
1920
+ value: 81.32782179098741
1921
+ - task:
1922
+ type: STS
1923
+ dataset:
1924
+ name: MTEB STS15
1925
+ type: mteb/sts15-sts
1926
+ config: default
1927
+ split: test
1928
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1929
+ metrics:
1930
+ - type: cos_sim_pearson
1931
+ value: 87.08585968722274
1932
+ - type: cos_sim_spearman
1933
+ value: 88.03110031451399
1934
+ - type: euclidean_pearson
1935
+ value: 85.74012019602384
1936
+ - type: euclidean_spearman
1937
+ value: 86.13592849438209
1938
+ - type: manhattan_pearson
1939
+ value: 85.74404842369206
1940
+ - type: manhattan_spearman
1941
+ value: 86.14492318960154
1942
+ - task:
1943
+ type: STS
1944
+ dataset:
1945
+ name: MTEB STS16
1946
+ type: mteb/sts16-sts
1947
+ config: default
1948
+ split: test
1949
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1950
+ metrics:
1951
+ - type: cos_sim_pearson
1952
+ value: 84.95069052788875
1953
+ - type: cos_sim_spearman
1954
+ value: 86.4867991595147
1955
+ - type: euclidean_pearson
1956
+ value: 84.31013325754635
1957
+ - type: euclidean_spearman
1958
+ value: 85.01529258006482
1959
+ - type: manhattan_pearson
1960
+ value: 84.26995570085374
1961
+ - type: manhattan_spearman
1962
+ value: 84.96982104986162
1963
+ - task:
1964
+ type: STS
1965
+ dataset:
1966
+ name: MTEB STS17 (en-en)
1967
+ type: mteb/sts17-crosslingual-sts
1968
+ config: en-en
1969
+ split: test
1970
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1971
+ metrics:
1972
+ - type: cos_sim_pearson
1973
+ value: 87.54617647971897
1974
+ - type: cos_sim_spearman
1975
+ value: 87.49834181751034
1976
+ - type: euclidean_pearson
1977
+ value: 86.01015322577122
1978
+ - type: euclidean_spearman
1979
+ value: 84.63362652063199
1980
+ - type: manhattan_pearson
1981
+ value: 86.13807574475706
1982
+ - type: manhattan_spearman
1983
+ value: 84.7772370721132
1984
+ - task:
1985
+ type: STS
1986
+ dataset:
1987
+ name: MTEB STS22 (en)
1988
+ type: mteb/sts22-crosslingual-sts
1989
+ config: en
1990
+ split: test
1991
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1992
+ metrics:
1993
+ - type: cos_sim_pearson
1994
+ value: 67.20047755786615
1995
+ - type: cos_sim_spearman
1996
+ value: 67.05324077987636
1997
+ - type: euclidean_pearson
1998
+ value: 66.91930642976601
1999
+ - type: euclidean_spearman
2000
+ value: 65.21491856099105
2001
+ - type: manhattan_pearson
2002
+ value: 66.78756851976624
2003
+ - type: manhattan_spearman
2004
+ value: 65.12356257740728
2005
+ - task:
2006
+ type: STS
2007
+ dataset:
2008
+ name: MTEB STSBenchmark
2009
+ type: mteb/stsbenchmark-sts
2010
+ config: default
2011
+ split: test
2012
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2013
+ metrics:
2014
+ - type: cos_sim_pearson
2015
+ value: 86.19852871539686
2016
+ - type: cos_sim_spearman
2017
+ value: 87.5161895296395
2018
+ - type: euclidean_pearson
2019
+ value: 84.59848645207485
2020
+ - type: euclidean_spearman
2021
+ value: 85.26427328757919
2022
+ - type: manhattan_pearson
2023
+ value: 84.59747366996524
2024
+ - type: manhattan_spearman
2025
+ value: 85.24045855146915
2026
+ - task:
2027
+ type: Reranking
2028
+ dataset:
2029
+ name: MTEB SciDocsRR
2030
+ type: mteb/scidocs-reranking
2031
+ config: default
2032
+ split: test
2033
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2034
+ metrics:
2035
+ - type: map
2036
+ value: 87.63320317811032
2037
+ - type: mrr
2038
+ value: 96.26242947321379
2039
+ - task:
2040
+ type: Retrieval
2041
+ dataset:
2042
+ name: MTEB SciFact
2043
+ type: scifact
2044
+ config: default
2045
+ split: test
2046
+ revision: None
2047
+ metrics:
2048
+ - type: map_at_1
2049
+ value: 60.928000000000004
2050
+ - type: map_at_10
2051
+ value: 70.112
2052
+ - type: map_at_100
2053
+ value: 70.59299999999999
2054
+ - type: map_at_1000
2055
+ value: 70.623
2056
+ - type: map_at_3
2057
+ value: 66.846
2058
+ - type: map_at_5
2059
+ value: 68.447
2060
+ - type: mrr_at_1
2061
+ value: 64.0
2062
+ - type: mrr_at_10
2063
+ value: 71.212
2064
+ - type: mrr_at_100
2065
+ value: 71.616
2066
+ - type: mrr_at_1000
2067
+ value: 71.64500000000001
2068
+ - type: mrr_at_3
2069
+ value: 68.77799999999999
2070
+ - type: mrr_at_5
2071
+ value: 70.094
2072
+ - type: ndcg_at_1
2073
+ value: 64.0
2074
+ - type: ndcg_at_10
2075
+ value: 74.607
2076
+ - type: ndcg_at_100
2077
+ value: 76.416
2078
+ - type: ndcg_at_1000
2079
+ value: 77.102
2080
+ - type: ndcg_at_3
2081
+ value: 69.126
2082
+ - type: ndcg_at_5
2083
+ value: 71.41300000000001
2084
+ - type: precision_at_1
2085
+ value: 64.0
2086
+ - type: precision_at_10
2087
+ value: 9.933
2088
+ - type: precision_at_100
2089
+ value: 1.077
2090
+ - type: precision_at_1000
2091
+ value: 0.11299999999999999
2092
+ - type: precision_at_3
2093
+ value: 26.556
2094
+ - type: precision_at_5
2095
+ value: 17.467
2096
+ - type: recall_at_1
2097
+ value: 60.928000000000004
2098
+ - type: recall_at_10
2099
+ value: 87.322
2100
+ - type: recall_at_100
2101
+ value: 94.833
2102
+ - type: recall_at_1000
2103
+ value: 100.0
2104
+ - type: recall_at_3
2105
+ value: 72.628
2106
+ - type: recall_at_5
2107
+ value: 78.428
2108
+ - task:
2109
+ type: PairClassification
2110
+ dataset:
2111
+ name: MTEB SprintDuplicateQuestions
2112
+ type: mteb/sprintduplicatequestions-pairclassification
2113
+ config: default
2114
+ split: test
2115
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2116
+ metrics:
2117
+ - type: cos_sim_accuracy
2118
+ value: 99.86237623762376
2119
+ - type: cos_sim_ap
2120
+ value: 96.72586477206649
2121
+ - type: cos_sim_f1
2122
+ value: 93.01858362631845
2123
+ - type: cos_sim_precision
2124
+ value: 93.4409687184662
2125
+ - type: cos_sim_recall
2126
+ value: 92.60000000000001
2127
+ - type: dot_accuracy
2128
+ value: 99.78019801980199
2129
+ - type: dot_ap
2130
+ value: 93.72748205246228
2131
+ - type: dot_f1
2132
+ value: 89.04109589041096
2133
+ - type: dot_precision
2134
+ value: 87.16475095785441
2135
+ - type: dot_recall
2136
+ value: 91.0
2137
+ - type: euclidean_accuracy
2138
+ value: 99.85445544554456
2139
+ - type: euclidean_ap
2140
+ value: 96.6661459876145
2141
+ - type: euclidean_f1
2142
+ value: 92.58337481333997
2143
+ - type: euclidean_precision
2144
+ value: 92.17046580773042
2145
+ - type: euclidean_recall
2146
+ value: 93.0
2147
+ - type: manhattan_accuracy
2148
+ value: 99.85445544554456
2149
+ - type: manhattan_ap
2150
+ value: 96.6883549244056
2151
+ - type: manhattan_f1
2152
+ value: 92.57598405580468
2153
+ - type: manhattan_precision
2154
+ value: 92.25422045680239
2155
+ - type: manhattan_recall
2156
+ value: 92.9
2157
+ - type: max_accuracy
2158
+ value: 99.86237623762376
2159
+ - type: max_ap
2160
+ value: 96.72586477206649
2161
+ - type: max_f1
2162
+ value: 93.01858362631845
2163
+ - task:
2164
+ type: Clustering
2165
+ dataset:
2166
+ name: MTEB StackExchangeClustering
2167
+ type: mteb/stackexchange-clustering
2168
+ config: default
2169
+ split: test
2170
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2171
+ metrics:
2172
+ - type: v_measure
2173
+ value: 66.39930057069995
2174
+ - task:
2175
+ type: Clustering
2176
+ dataset:
2177
+ name: MTEB StackExchangeClusteringP2P
2178
+ type: mteb/stackexchange-clustering-p2p
2179
+ config: default
2180
+ split: test
2181
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2182
+ metrics:
2183
+ - type: v_measure
2184
+ value: 34.96398659903402
2185
+ - task:
2186
+ type: Reranking
2187
+ dataset:
2188
+ name: MTEB StackOverflowDupQuestions
2189
+ type: mteb/stackoverflowdupquestions-reranking
2190
+ config: default
2191
+ split: test
2192
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2193
+ metrics:
2194
+ - type: map
2195
+ value: 55.946944700355395
2196
+ - type: mrr
2197
+ value: 56.97151398438164
2198
+ - task:
2199
+ type: Summarization
2200
+ dataset:
2201
+ name: MTEB SummEval
2202
+ type: mteb/summeval
2203
+ config: default
2204
+ split: test
2205
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2206
+ metrics:
2207
+ - type: cos_sim_pearson
2208
+ value: 31.541657650692905
2209
+ - type: cos_sim_spearman
2210
+ value: 31.605804192286303
2211
+ - type: dot_pearson
2212
+ value: 28.26905996736398
2213
+ - type: dot_spearman
2214
+ value: 27.864801765851187
2215
+ - task:
2216
+ type: Retrieval
2217
+ dataset:
2218
+ name: MTEB TRECCOVID
2219
+ type: trec-covid
2220
+ config: default
2221
+ split: test
2222
+ revision: None
2223
+ metrics:
2224
+ - type: map_at_1
2225
+ value: 0.22599999999999998
2226
+ - type: map_at_10
2227
+ value: 1.8870000000000002
2228
+ - type: map_at_100
2229
+ value: 9.78
2230
+ - type: map_at_1000
2231
+ value: 22.514
2232
+ - type: map_at_3
2233
+ value: 0.6669999999999999
2234
+ - type: map_at_5
2235
+ value: 1.077
2236
+ - type: mrr_at_1
2237
+ value: 82.0
2238
+ - type: mrr_at_10
2239
+ value: 89.86699999999999
2240
+ - type: mrr_at_100
2241
+ value: 89.86699999999999
2242
+ - type: mrr_at_1000
2243
+ value: 89.86699999999999
2244
+ - type: mrr_at_3
2245
+ value: 89.667
2246
+ - type: mrr_at_5
2247
+ value: 89.667
2248
+ - type: ndcg_at_1
2249
+ value: 79.0
2250
+ - type: ndcg_at_10
2251
+ value: 74.818
2252
+ - type: ndcg_at_100
2253
+ value: 53.715999999999994
2254
+ - type: ndcg_at_1000
2255
+ value: 47.082
2256
+ - type: ndcg_at_3
2257
+ value: 82.134
2258
+ - type: ndcg_at_5
2259
+ value: 79.81899999999999
2260
+ - type: precision_at_1
2261
+ value: 82.0
2262
+ - type: precision_at_10
2263
+ value: 78.0
2264
+ - type: precision_at_100
2265
+ value: 54.48
2266
+ - type: precision_at_1000
2267
+ value: 20.518
2268
+ - type: precision_at_3
2269
+ value: 87.333
2270
+ - type: precision_at_5
2271
+ value: 85.2
2272
+ - type: recall_at_1
2273
+ value: 0.22599999999999998
2274
+ - type: recall_at_10
2275
+ value: 2.072
2276
+ - type: recall_at_100
2277
+ value: 13.013
2278
+ - type: recall_at_1000
2279
+ value: 43.462
2280
+ - type: recall_at_3
2281
+ value: 0.695
2282
+ - type: recall_at_5
2283
+ value: 1.139
2284
+ - task:
2285
+ type: Retrieval
2286
+ dataset:
2287
+ name: MTEB Touche2020
2288
+ type: webis-touche2020
2289
+ config: default
2290
+ split: test
2291
+ revision: None
2292
+ metrics:
2293
+ - type: map_at_1
2294
+ value: 2.328
2295
+ - type: map_at_10
2296
+ value: 9.795
2297
+ - type: map_at_100
2298
+ value: 15.801000000000002
2299
+ - type: map_at_1000
2300
+ value: 17.23
2301
+ - type: map_at_3
2302
+ value: 4.734
2303
+ - type: map_at_5
2304
+ value: 6.644
2305
+ - type: mrr_at_1
2306
+ value: 30.612000000000002
2307
+ - type: mrr_at_10
2308
+ value: 46.902
2309
+ - type: mrr_at_100
2310
+ value: 47.495
2311
+ - type: mrr_at_1000
2312
+ value: 47.495
2313
+ - type: mrr_at_3
2314
+ value: 41.156
2315
+ - type: mrr_at_5
2316
+ value: 44.218
2317
+ - type: ndcg_at_1
2318
+ value: 28.571
2319
+ - type: ndcg_at_10
2320
+ value: 24.806
2321
+ - type: ndcg_at_100
2322
+ value: 36.419000000000004
2323
+ - type: ndcg_at_1000
2324
+ value: 47.272999999999996
2325
+ - type: ndcg_at_3
2326
+ value: 25.666
2327
+ - type: ndcg_at_5
2328
+ value: 25.448999999999998
2329
+ - type: precision_at_1
2330
+ value: 30.612000000000002
2331
+ - type: precision_at_10
2332
+ value: 23.061
2333
+ - type: precision_at_100
2334
+ value: 7.714
2335
+ - type: precision_at_1000
2336
+ value: 1.484
2337
+ - type: precision_at_3
2338
+ value: 26.531
2339
+ - type: precision_at_5
2340
+ value: 26.122
2341
+ - type: recall_at_1
2342
+ value: 2.328
2343
+ - type: recall_at_10
2344
+ value: 16.524
2345
+ - type: recall_at_100
2346
+ value: 47.179
2347
+ - type: recall_at_1000
2348
+ value: 81.22200000000001
2349
+ - type: recall_at_3
2350
+ value: 5.745
2351
+ - type: recall_at_5
2352
+ value: 9.339
2353
+ - task:
2354
+ type: Classification
2355
+ dataset:
2356
+ name: MTEB ToxicConversationsClassification
2357
+ type: mteb/toxic_conversations_50k
2358
+ config: default
2359
+ split: test
2360
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2361
+ metrics:
2362
+ - type: accuracy
2363
+ value: 70.9142
2364
+ - type: ap
2365
+ value: 14.335574772555415
2366
+ - type: f1
2367
+ value: 54.62839595194111
2368
+ - task:
2369
+ type: Classification
2370
+ dataset:
2371
+ name: MTEB TweetSentimentExtractionClassification
2372
+ type: mteb/tweet_sentiment_extraction
2373
+ config: default
2374
+ split: test
2375
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2376
+ metrics:
2377
+ - type: accuracy
2378
+ value: 59.94340690435768
2379
+ - type: f1
2380
+ value: 60.286487936731916
2381
+ - task:
2382
+ type: Clustering
2383
+ dataset:
2384
+ name: MTEB TwentyNewsgroupsClustering
2385
+ type: mteb/twentynewsgroups-clustering
2386
+ config: default
2387
+ split: test
2388
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2389
+ metrics:
2390
+ - type: v_measure
2391
+ value: 51.26597708987974
2392
+ - task:
2393
+ type: PairClassification
2394
+ dataset:
2395
+ name: MTEB TwitterSemEval2015
2396
+ type: mteb/twittersemeval2015-pairclassification
2397
+ config: default
2398
+ split: test
2399
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2400
+ metrics:
2401
+ - type: cos_sim_accuracy
2402
+ value: 87.48882398521786
2403
+ - type: cos_sim_ap
2404
+ value: 79.04326607602204
2405
+ - type: cos_sim_f1
2406
+ value: 71.64566826860633
2407
+ - type: cos_sim_precision
2408
+ value: 70.55512918905092
2409
+ - type: cos_sim_recall
2410
+ value: 72.77044854881267
2411
+ - type: dot_accuracy
2412
+ value: 84.19264469213805
2413
+ - type: dot_ap
2414
+ value: 67.96360043562528
2415
+ - type: dot_f1
2416
+ value: 64.06418393006827
2417
+ - type: dot_precision
2418
+ value: 58.64941898706424
2419
+ - type: dot_recall
2420
+ value: 70.58047493403694
2421
+ - type: euclidean_accuracy
2422
+ value: 87.45902127913214
2423
+ - type: euclidean_ap
2424
+ value: 78.9742237648272
2425
+ - type: euclidean_f1
2426
+ value: 71.5553235908142
2427
+ - type: euclidean_precision
2428
+ value: 70.77955601445535
2429
+ - type: euclidean_recall
2430
+ value: 72.34828496042216
2431
+ - type: manhattan_accuracy
2432
+ value: 87.41729749061214
2433
+ - type: manhattan_ap
2434
+ value: 78.90073137580596
2435
+ - type: manhattan_f1
2436
+ value: 71.3942611553533
2437
+ - type: manhattan_precision
2438
+ value: 68.52705653967483
2439
+ - type: manhattan_recall
2440
+ value: 74.51187335092348
2441
+ - type: max_accuracy
2442
+ value: 87.48882398521786
2443
+ - type: max_ap
2444
+ value: 79.04326607602204
2445
+ - type: max_f1
2446
+ value: 71.64566826860633
2447
+ - task:
2448
+ type: PairClassification
2449
+ dataset:
2450
+ name: MTEB TwitterURLCorpus
2451
+ type: mteb/twitterurlcorpus-pairclassification
2452
+ config: default
2453
+ split: test
2454
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2455
+ metrics:
2456
+ - type: cos_sim_accuracy
2457
+ value: 88.68125897465751
2458
+ - type: cos_sim_ap
2459
+ value: 85.6003454431979
2460
+ - type: cos_sim_f1
2461
+ value: 77.6957163958641
2462
+ - type: cos_sim_precision
2463
+ value: 73.0110366307807
2464
+ - type: cos_sim_recall
2465
+ value: 83.02279026793964
2466
+ - type: dot_accuracy
2467
+ value: 87.7672992587418
2468
+ - type: dot_ap
2469
+ value: 82.4971301112899
2470
+ - type: dot_f1
2471
+ value: 75.90528233151184
2472
+ - type: dot_precision
2473
+ value: 72.0370626469368
2474
+ - type: dot_recall
2475
+ value: 80.21250384970742
2476
+ - type: euclidean_accuracy
2477
+ value: 88.4503434625684
2478
+ - type: euclidean_ap
2479
+ value: 84.91949884748384
2480
+ - type: euclidean_f1
2481
+ value: 76.92365018444684
2482
+ - type: euclidean_precision
2483
+ value: 74.53245721712759
2484
+ - type: euclidean_recall
2485
+ value: 79.47336002463813
2486
+ - type: manhattan_accuracy
2487
+ value: 88.47556952691427
2488
+ - type: manhattan_ap
2489
+ value: 84.8963689101517
2490
+ - type: manhattan_f1
2491
+ value: 76.85901249256395
2492
+ - type: manhattan_precision
2493
+ value: 74.31693989071039
2494
+ - type: manhattan_recall
2495
+ value: 79.58115183246073
2496
+ - type: max_accuracy
2497
+ value: 88.68125897465751
2498
+ - type: max_ap
2499
+ value: 85.6003454431979
2500
+ - type: max_f1
2501
+ value: 77.6957163958641
2502
+ ---
2503
+
2504
+ This model is a quantized version of [`BAAI/bge-large-en-v1.5`](https://huggingface.co/BAAI/bge-large-en-v1.5) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel).
2505
+
2506
+ First make sure you have `optimum-intel` installed:
2507
+
2508
+ ```bash
2509
+ pip install optimum[openvino]
2510
+ ```
2511
+
2512
+ To load your model you can do as follows:
2513
+
2514
+ ```python
2515
+ from optimum.intel import OVModelForFeatureExtraction
2516
+
2517
+ model_id = "nskeatts/bge-large-en-v1.5-openvino-8bit"
2518
+ model = OVModelForFeatureExtraction.from_pretrained(model_id)
2519
+ ```