Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,110 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- de
|
| 6 |
+
- fr
|
| 7 |
+
- it
|
| 8 |
+
- pt
|
| 9 |
+
- hi
|
| 10 |
+
- es
|
| 11 |
+
- th
|
| 12 |
+
library_name: transformers
|
| 13 |
+
license: llama3.1
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
+
tags:
|
| 16 |
+
- facebook
|
| 17 |
+
- meta
|
| 18 |
+
- pytorch
|
| 19 |
+
- llama
|
| 20 |
+
- llama-3
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
## Model Information
|
| 24 |
+
The Llama 3.1 text only 41B model is pruned from Llama 3.1 instruction finetuned text only 70B
|
| 25 |
+
using [FLAP method](arxiv.org/abs/2312.11983).
|
| 26 |
+
|
| 27 |
+
Hyper parameters used for pruning:
|
| 28 |
+
```
|
| 29 |
+
metrics: WIFV
|
| 30 |
+
structure: AL-AM
|
| 31 |
+
pruning_ratio: 0.5
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
## Limitation
|
| 35 |
+
This `llama3.1-41B-raw` model shows unstable output.
|
| 36 |
+
A finetune on instruction dataset is recommended.
|
| 37 |
+
|
| 38 |
+
The model is not supported by any library at the moment
|
| 39 |
+
due to its unconsistent shape between layers after pruning.
|
| 40 |
+
|
| 41 |
+
## Usage
|
| 42 |
+
The model is not supported by any library at the moment,
|
| 43 |
+
following is a workaround.
|
| 44 |
+
```python
|
| 45 |
+
from functools import reduce
|
| 46 |
+
def get_module_by_name(module, access_string):
|
| 47 |
+
names = access_string.split(sep='.')
|
| 48 |
+
return reduce(getattr, names, module)
|
| 49 |
+
|
| 50 |
+
import json
|
| 51 |
+
from safetensors import safe_open
|
| 52 |
+
from transformers import LlamaForCausalLM
|
| 53 |
+
class MyLlamaForCausalLM(LlamaForCausalLM):
|
| 54 |
+
def __init__(self, config):
|
| 55 |
+
super().__init__(config)
|
| 56 |
+
with open(os.path.join(
|
| 57 |
+
config._name_or_path,
|
| 58 |
+
"model.safetensors.index.json")) as f:
|
| 59 |
+
weight_map = json.load(f)
|
| 60 |
+
weight_map = weight_map["weight_map"]
|
| 61 |
+
for name, path in weight_map.items():
|
| 62 |
+
module_name = name.replace('.weight', '')
|
| 63 |
+
if '.bias' in module_name:
|
| 64 |
+
continue
|
| 65 |
+
layer = get_module_by_name(self, module_name)
|
| 66 |
+
with safe_open(
|
| 67 |
+
os.path.join(
|
| 68 |
+
config._name_or_path,
|
| 69 |
+
path), framework="pt") as f:
|
| 70 |
+
tensor = f.get_tensor(name)
|
| 71 |
+
if 'mlp.' in name or 'attn.' in name:
|
| 72 |
+
if tensor.shape != (layer.out_features, layer.in_features):
|
| 73 |
+
layer = layer.__init__(
|
| 74 |
+
tensor.shape[1],
|
| 75 |
+
tensor.shape[0],
|
| 76 |
+
bias=layer.bias,
|
| 77 |
+
dtype=layer.weight.dtype,
|
| 78 |
+
device=layer.weight.device)
|
| 79 |
+
for name, path in weight_map.items():
|
| 80 |
+
if 'attn.' in name:
|
| 81 |
+
module = get_module_by_name(
|
| 82 |
+
self,
|
| 83 |
+
'.'.join(name.split('.')[:-2]))
|
| 84 |
+
module.num_heads = module.q_proj.out_features // module.head_dim
|
| 85 |
+
module.num_key_value_heads = module.num_heads
|
| 86 |
+
module.num_key_value_groups = module.num_heads // module.num_key_value_heads
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
model = MyLlamaForCausalLM.from_pretrained(
|
| 90 |
+
"npc0/llama3.1-41B-raw",
|
| 91 |
+
torch_dtype=torch.float16,
|
| 92 |
+
device_map="auto"
|
| 93 |
+
)
|
| 94 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 95 |
+
"FLAP/llm_weights/flap_p0.5_WIFV_ALAM_llama_70b")
|
| 96 |
+
model = model.eval()
|
| 97 |
+
|
| 98 |
+
messages = [
|
| 99 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
| 100 |
+
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
|
| 101 |
+
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
|
| 102 |
+
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
model_inputs = tokenizer.apply_chat_template(messages,
|
| 106 |
+
return_tensors="pt").to(model.device)
|
| 107 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=128)
|
| 108 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
| 109 |
+
print(decoded[0])
|
| 110 |
+
```
|