Duplicate from Maikou/Michelangelo
Browse filesCo-authored-by: Zhao <[email protected]>
This view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +35 -0
- .gitignore +3 -0
- README.md +13 -0
- checkpoints/aligned_shape_latents/shapevae-256.ckpt +3 -0
- checkpoints/clip/clip-vit-large-patch14 +1 -0
- checkpoints/image_cond_diffuser_asl/image-ASLDM-256.ckpt +3 -0
- checkpoints/text_cond_diffuser_asl/text-ASLDM-256.ckpt +3 -0
- configs/aligned_shape_latents/shapevae-256.yaml +46 -0
- configs/image_cond_diffuser_asl/image-ASLDM-256.yaml +97 -0
- configs/text_cond_diffuser_asl/text-ASLDM-256.yaml +98 -0
- example_data/image/car.jpg +0 -0
- example_data/surface/surface.npz +3 -0
- gradio_app.py +372 -0
- gradio_cached_dir/example/img_example/airplane.jpg +0 -0
- gradio_cached_dir/example/img_example/alita.jpg +0 -0
- gradio_cached_dir/example/img_example/bag.jpg +0 -0
- gradio_cached_dir/example/img_example/bench.jpg +0 -0
- gradio_cached_dir/example/img_example/building.jpg +0 -0
- gradio_cached_dir/example/img_example/burger.jpg +0 -0
- gradio_cached_dir/example/img_example/car.jpg +0 -0
- gradio_cached_dir/example/img_example/loopy.jpg +0 -0
- gradio_cached_dir/example/img_example/mario.jpg +0 -0
- gradio_cached_dir/example/img_example/ship.jpg +0 -0
- inference.py +181 -0
- michelangelo/__init__.py +1 -0
- michelangelo/data/__init__.py +1 -0
- michelangelo/data/templates.json +69 -0
- michelangelo/data/transforms.py +407 -0
- michelangelo/data/utils.py +59 -0
- michelangelo/graphics/__init__.py +1 -0
- michelangelo/graphics/primitives/__init__.py +9 -0
- michelangelo/graphics/primitives/mesh.py +114 -0
- michelangelo/graphics/primitives/volume.py +21 -0
- michelangelo/models/__init__.py +1 -0
- michelangelo/models/asl_diffusion/__init__.py +1 -0
- michelangelo/models/asl_diffusion/asl_diffuser_pl_module.py +483 -0
- michelangelo/models/asl_diffusion/asl_udt.py +104 -0
- michelangelo/models/asl_diffusion/base.py +13 -0
- michelangelo/models/asl_diffusion/clip_asl_diffuser_pl_module.py +393 -0
- michelangelo/models/asl_diffusion/inference_utils.py +80 -0
- michelangelo/models/conditional_encoders/__init__.py +3 -0
- michelangelo/models/conditional_encoders/clip.py +89 -0
- michelangelo/models/conditional_encoders/encoder_factory.py +562 -0
- michelangelo/models/modules/__init__.py +3 -0
- michelangelo/models/modules/checkpoint.py +69 -0
- michelangelo/models/modules/diffusion_transformer.py +218 -0
- michelangelo/models/modules/distributions.py +100 -0
- michelangelo/models/modules/embedder.py +213 -0
- michelangelo/models/modules/transformer_blocks.py +286 -0
- michelangelo/models/modules/transformer_vit.py +308 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.idea
|
| 2 |
+
.vscode
|
| 3 |
+
__pycache__
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: lgpl-3.0
|
| 3 |
+
pipeline_tag: text-to-3d
|
| 4 |
+
tags:
|
| 5 |
+
- image-to-3d
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# Michelangelo
|
| 9 |
+
|
| 10 |
+
* [Project Page](https://neuralcarver.github.io/michelangelo/)
|
| 11 |
+
* [Paper](https://arxiv.org/abs/2306.17115)
|
| 12 |
+
* [Code](https://github.com/NeuralCarver/Michelangelo)
|
| 13 |
+
* [Demo](https://huggingface.co/spaces/Maikou/Michelangelo)
|
checkpoints/aligned_shape_latents/shapevae-256.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0391b81c36240e8f766fedf4265df599884193a5ef65354525074b9a00887454
|
| 3 |
+
size 3934164973
|
checkpoints/clip/clip-vit-large-patch14
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 8d052a0f05efbaefbc9e8786ba291cfdf93e5bff
|
checkpoints/image_cond_diffuser_asl/image-ASLDM-256.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83eda8e4f81034dee7674b3ce1ff03a4900181f0f0d7bc461e1a8692fb379b0f
|
| 3 |
+
size 1999253985
|
checkpoints/text_cond_diffuser_asl/text-ASLDM-256.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:af546b1f877a41d71f63c3a11394779e77c954002c50dc8e75359338224f615b
|
| 3 |
+
size 4076140813
|
configs/aligned_shape_latents/shapevae-256.yaml
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
target: michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
|
| 3 |
+
params:
|
| 4 |
+
shape_module_cfg:
|
| 5 |
+
target: michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
|
| 6 |
+
params:
|
| 7 |
+
num_latents: 256
|
| 8 |
+
embed_dim: 64
|
| 9 |
+
point_feats: 3 # normal
|
| 10 |
+
num_freqs: 8
|
| 11 |
+
include_pi: false
|
| 12 |
+
heads: 12
|
| 13 |
+
width: 768
|
| 14 |
+
num_encoder_layers: 8
|
| 15 |
+
num_decoder_layers: 16
|
| 16 |
+
use_ln_post: true
|
| 17 |
+
init_scale: 0.25
|
| 18 |
+
qkv_bias: false
|
| 19 |
+
use_checkpoint: true
|
| 20 |
+
aligned_module_cfg:
|
| 21 |
+
target: michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
|
| 22 |
+
params:
|
| 23 |
+
clip_model_version: "./checkpoints/clip/clip-vit-large-patch14"
|
| 24 |
+
|
| 25 |
+
loss_cfg:
|
| 26 |
+
target: michelangelo.models.tsal.loss.ContrastKLNearFar
|
| 27 |
+
params:
|
| 28 |
+
contrast_weight: 0.1
|
| 29 |
+
near_weight: 0.1
|
| 30 |
+
kl_weight: 0.001
|
| 31 |
+
|
| 32 |
+
optimizer_cfg:
|
| 33 |
+
optimizer:
|
| 34 |
+
target: torch.optim.AdamW
|
| 35 |
+
params:
|
| 36 |
+
betas: [0.9, 0.99]
|
| 37 |
+
eps: 1.e-6
|
| 38 |
+
weight_decay: 1.e-2
|
| 39 |
+
|
| 40 |
+
scheduler:
|
| 41 |
+
target: michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
|
| 42 |
+
params:
|
| 43 |
+
warm_up_steps: 5000
|
| 44 |
+
f_start: 1.e-6
|
| 45 |
+
f_min: 1.e-3
|
| 46 |
+
f_max: 1.0
|
configs/image_cond_diffuser_asl/image-ASLDM-256.yaml
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
target: michelangelo.models.asl_diffusion.clip_asl_diffuser_pl_module.ClipASLDiffuser
|
| 3 |
+
params:
|
| 4 |
+
first_stage_config:
|
| 5 |
+
target: michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
|
| 6 |
+
params:
|
| 7 |
+
shape_module_cfg:
|
| 8 |
+
target: michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
|
| 9 |
+
params:
|
| 10 |
+
num_latents: &num_latents 256
|
| 11 |
+
embed_dim: &embed_dim 64
|
| 12 |
+
point_feats: 3 # normal
|
| 13 |
+
num_freqs: 8
|
| 14 |
+
include_pi: false
|
| 15 |
+
heads: 12
|
| 16 |
+
width: 768
|
| 17 |
+
num_encoder_layers: 8
|
| 18 |
+
num_decoder_layers: 16
|
| 19 |
+
use_ln_post: true
|
| 20 |
+
init_scale: 0.25
|
| 21 |
+
qkv_bias: false
|
| 22 |
+
use_checkpoint: false
|
| 23 |
+
aligned_module_cfg:
|
| 24 |
+
target: michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
|
| 25 |
+
params:
|
| 26 |
+
clip_model_version: "./checkpoints/clip/clip-vit-large-patch14"
|
| 27 |
+
|
| 28 |
+
loss_cfg:
|
| 29 |
+
target: torch.nn.Identity
|
| 30 |
+
|
| 31 |
+
cond_stage_config:
|
| 32 |
+
target: michelangelo.models.conditional_encoders.encoder_factory.FrozenCLIPImageGridEmbedder
|
| 33 |
+
params:
|
| 34 |
+
version: "./checkpoints/clip/clip-vit-large-patch14"
|
| 35 |
+
zero_embedding_radio: 0.1
|
| 36 |
+
|
| 37 |
+
first_stage_key: "surface"
|
| 38 |
+
cond_stage_key: "image"
|
| 39 |
+
scale_by_std: false
|
| 40 |
+
|
| 41 |
+
denoiser_cfg:
|
| 42 |
+
target: michelangelo.models.asl_diffusion.asl_udt.ConditionalASLUDTDenoiser
|
| 43 |
+
params:
|
| 44 |
+
input_channels: *embed_dim
|
| 45 |
+
output_channels: *embed_dim
|
| 46 |
+
n_ctx: *num_latents
|
| 47 |
+
width: 768
|
| 48 |
+
layers: 6 # 2 * 6 + 1 = 13
|
| 49 |
+
heads: 12
|
| 50 |
+
context_dim: 1024
|
| 51 |
+
init_scale: 1.0
|
| 52 |
+
skip_ln: true
|
| 53 |
+
use_checkpoint: true
|
| 54 |
+
|
| 55 |
+
scheduler_cfg:
|
| 56 |
+
guidance_scale: 7.5
|
| 57 |
+
num_inference_steps: 50
|
| 58 |
+
eta: 0.0
|
| 59 |
+
|
| 60 |
+
noise:
|
| 61 |
+
target: diffusers.schedulers.DDPMScheduler
|
| 62 |
+
params:
|
| 63 |
+
num_train_timesteps: 1000
|
| 64 |
+
beta_start: 0.00085
|
| 65 |
+
beta_end: 0.012
|
| 66 |
+
beta_schedule: "scaled_linear"
|
| 67 |
+
variance_type: "fixed_small"
|
| 68 |
+
clip_sample: false
|
| 69 |
+
denoise:
|
| 70 |
+
target: diffusers.schedulers.DDIMScheduler
|
| 71 |
+
params:
|
| 72 |
+
num_train_timesteps: 1000
|
| 73 |
+
beta_start: 0.00085
|
| 74 |
+
beta_end: 0.012
|
| 75 |
+
beta_schedule: "scaled_linear"
|
| 76 |
+
clip_sample: false # clip sample to -1~1
|
| 77 |
+
set_alpha_to_one: false
|
| 78 |
+
steps_offset: 1
|
| 79 |
+
|
| 80 |
+
optimizer_cfg:
|
| 81 |
+
optimizer:
|
| 82 |
+
target: torch.optim.AdamW
|
| 83 |
+
params:
|
| 84 |
+
betas: [0.9, 0.99]
|
| 85 |
+
eps: 1.e-6
|
| 86 |
+
weight_decay: 1.e-2
|
| 87 |
+
|
| 88 |
+
scheduler:
|
| 89 |
+
target: michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
|
| 90 |
+
params:
|
| 91 |
+
warm_up_steps: 5000
|
| 92 |
+
f_start: 1.e-6
|
| 93 |
+
f_min: 1.e-3
|
| 94 |
+
f_max: 1.0
|
| 95 |
+
|
| 96 |
+
loss_cfg:
|
| 97 |
+
loss_type: "mse"
|
configs/text_cond_diffuser_asl/text-ASLDM-256.yaml
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
target: michelangelo.models.asl_diffusion.clip_asl_diffuser_pl_module.ClipASLDiffuser
|
| 3 |
+
params:
|
| 4 |
+
first_stage_config:
|
| 5 |
+
target: michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
|
| 6 |
+
params:
|
| 7 |
+
shape_module_cfg:
|
| 8 |
+
target: michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
|
| 9 |
+
params:
|
| 10 |
+
num_latents: &num_latents 256
|
| 11 |
+
embed_dim: &embed_dim 64
|
| 12 |
+
point_feats: 3 # normal
|
| 13 |
+
num_freqs: 8
|
| 14 |
+
include_pi: false
|
| 15 |
+
heads: 12
|
| 16 |
+
width: 768
|
| 17 |
+
num_encoder_layers: 8
|
| 18 |
+
num_decoder_layers: 16
|
| 19 |
+
use_ln_post: true
|
| 20 |
+
init_scale: 0.25
|
| 21 |
+
qkv_bias: false
|
| 22 |
+
use_checkpoint: true
|
| 23 |
+
aligned_module_cfg:
|
| 24 |
+
target: michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
|
| 25 |
+
params:
|
| 26 |
+
clip_model_version: "./checkpoints/clip/clip-vit-large-patch14"
|
| 27 |
+
|
| 28 |
+
loss_cfg:
|
| 29 |
+
target: torch.nn.Identity
|
| 30 |
+
|
| 31 |
+
cond_stage_config:
|
| 32 |
+
target: michelangelo.models.conditional_encoders.encoder_factory.FrozenAlignedCLIPTextEmbedder
|
| 33 |
+
params:
|
| 34 |
+
version: "./checkpoints/clip/clip-vit-large-patch14"
|
| 35 |
+
zero_embedding_radio: 0.1
|
| 36 |
+
max_length: 77
|
| 37 |
+
|
| 38 |
+
first_stage_key: "surface"
|
| 39 |
+
cond_stage_key: "text"
|
| 40 |
+
scale_by_std: false
|
| 41 |
+
|
| 42 |
+
denoiser_cfg:
|
| 43 |
+
target: michelangelo.models.asl_diffusion.asl_udt.ConditionalASLUDTDenoiser
|
| 44 |
+
params:
|
| 45 |
+
input_channels: *embed_dim
|
| 46 |
+
output_channels: *embed_dim
|
| 47 |
+
n_ctx: *num_latents
|
| 48 |
+
width: 768
|
| 49 |
+
layers: 8 # 2 * 6 + 1 = 13
|
| 50 |
+
heads: 12
|
| 51 |
+
context_dim: 768
|
| 52 |
+
init_scale: 1.0
|
| 53 |
+
skip_ln: true
|
| 54 |
+
use_checkpoint: true
|
| 55 |
+
|
| 56 |
+
scheduler_cfg:
|
| 57 |
+
guidance_scale: 7.5
|
| 58 |
+
num_inference_steps: 50
|
| 59 |
+
eta: 0.0
|
| 60 |
+
|
| 61 |
+
noise:
|
| 62 |
+
target: diffusers.schedulers.DDPMScheduler
|
| 63 |
+
params:
|
| 64 |
+
num_train_timesteps: 1000
|
| 65 |
+
beta_start: 0.00085
|
| 66 |
+
beta_end: 0.012
|
| 67 |
+
beta_schedule: "scaled_linear"
|
| 68 |
+
variance_type: "fixed_small"
|
| 69 |
+
clip_sample: false
|
| 70 |
+
denoise:
|
| 71 |
+
target: diffusers.schedulers.DDIMScheduler
|
| 72 |
+
params:
|
| 73 |
+
num_train_timesteps: 1000
|
| 74 |
+
beta_start: 0.00085
|
| 75 |
+
beta_end: 0.012
|
| 76 |
+
beta_schedule: "scaled_linear"
|
| 77 |
+
clip_sample: false # clip sample to -1~1
|
| 78 |
+
set_alpha_to_one: false
|
| 79 |
+
steps_offset: 1
|
| 80 |
+
|
| 81 |
+
optimizer_cfg:
|
| 82 |
+
optimizer:
|
| 83 |
+
target: torch.optim.AdamW
|
| 84 |
+
params:
|
| 85 |
+
betas: [0.9, 0.99]
|
| 86 |
+
eps: 1.e-6
|
| 87 |
+
weight_decay: 1.e-2
|
| 88 |
+
|
| 89 |
+
scheduler:
|
| 90 |
+
target: michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
|
| 91 |
+
params:
|
| 92 |
+
warm_up_steps: 5000
|
| 93 |
+
f_start: 1.e-6
|
| 94 |
+
f_min: 1.e-3
|
| 95 |
+
f_max: 1.0
|
| 96 |
+
|
| 97 |
+
loss_cfg:
|
| 98 |
+
loss_type: "mse"
|
example_data/image/car.jpg
ADDED
|
example_data/surface/surface.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0893e44d82ada683baa656a718beaf6ec19fc28b6816b451f56645530d5bb962
|
| 3 |
+
size 1201024
|
gradio_app.py
ADDED
|
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
from collections import OrderedDict
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
+
import trimesh
|
| 8 |
+
from typing import Optional, List
|
| 9 |
+
from einops import repeat, rearrange
|
| 10 |
+
import numpy as np
|
| 11 |
+
from michelangelo.models.tsal.tsal_base import Latent2MeshOutput
|
| 12 |
+
from michelangelo.utils.misc import get_config_from_file, instantiate_from_config
|
| 13 |
+
from michelangelo.utils.visualizers.pythreejs_viewer import PyThreeJSViewer
|
| 14 |
+
from michelangelo.utils.visualizers import html_util
|
| 15 |
+
|
| 16 |
+
import gradio as gr
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
gradio_cached_dir = "./gradio_cached_dir"
|
| 20 |
+
os.makedirs(gradio_cached_dir, exist_ok=True)
|
| 21 |
+
|
| 22 |
+
save_mesh = False
|
| 23 |
+
|
| 24 |
+
state = ""
|
| 25 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
|
| 27 |
+
box_v = 1.1
|
| 28 |
+
viewer = PyThreeJSViewer(settings={}, render_mode="WEBSITE")
|
| 29 |
+
|
| 30 |
+
image_model_config_dict = OrderedDict({
|
| 31 |
+
"ASLDM-256-obj": {
|
| 32 |
+
"config": "./configs/image_cond_diffuser_asl/image-ASLDM-256.yaml",
|
| 33 |
+
"ckpt_path": "./checkpoints/image_cond_diffuser_asl/image-ASLDM-256.ckpt",
|
| 34 |
+
},
|
| 35 |
+
})
|
| 36 |
+
|
| 37 |
+
text_model_config_dict = OrderedDict({
|
| 38 |
+
"ASLDM-256": {
|
| 39 |
+
"config": "./configs/text_cond_diffuser_asl/text-ASLDM-256.yaml",
|
| 40 |
+
"ckpt_path": "./checkpoints/text_cond_diffuser_asl/text-ASLDM-256.ckpt",
|
| 41 |
+
},
|
| 42 |
+
})
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class InferenceModel(object):
|
| 46 |
+
model = None
|
| 47 |
+
name = ""
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
text2mesh_model = InferenceModel()
|
| 51 |
+
image2mesh_model = InferenceModel()
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def set_state(s):
|
| 55 |
+
global state
|
| 56 |
+
state = s
|
| 57 |
+
print(s)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def output_to_html_frame(mesh_outputs: List[Latent2MeshOutput], bbox_size: float,
|
| 61 |
+
image: Optional[np.ndarray] = None,
|
| 62 |
+
html_frame: bool = False):
|
| 63 |
+
global viewer
|
| 64 |
+
|
| 65 |
+
for i in range(len(mesh_outputs)):
|
| 66 |
+
mesh = mesh_outputs[i]
|
| 67 |
+
if mesh is None:
|
| 68 |
+
continue
|
| 69 |
+
|
| 70 |
+
mesh_v = mesh.mesh_v.copy()
|
| 71 |
+
mesh_v[:, 0] += i * np.max(bbox_size)
|
| 72 |
+
mesh_v[:, 2] += np.max(bbox_size)
|
| 73 |
+
viewer.add_mesh(mesh_v, mesh.mesh_f)
|
| 74 |
+
|
| 75 |
+
mesh_tag = viewer.to_html(html_frame=False)
|
| 76 |
+
|
| 77 |
+
if image is not None:
|
| 78 |
+
image_tag = html_util.to_image_embed_tag(image)
|
| 79 |
+
frame = f"""
|
| 80 |
+
<table border = "1">
|
| 81 |
+
<tr>
|
| 82 |
+
<td>{image_tag}</td>
|
| 83 |
+
<td>{mesh_tag}</td>
|
| 84 |
+
</tr>
|
| 85 |
+
</table>
|
| 86 |
+
"""
|
| 87 |
+
else:
|
| 88 |
+
frame = mesh_tag
|
| 89 |
+
|
| 90 |
+
if html_frame:
|
| 91 |
+
frame = html_util.to_html_frame(frame)
|
| 92 |
+
|
| 93 |
+
viewer.reset()
|
| 94 |
+
|
| 95 |
+
return frame
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def load_model(model_name: str, model_config_dict: dict, inference_model: InferenceModel):
|
| 99 |
+
global device
|
| 100 |
+
|
| 101 |
+
if inference_model.name == model_name:
|
| 102 |
+
model = inference_model.model
|
| 103 |
+
else:
|
| 104 |
+
assert model_name in model_config_dict
|
| 105 |
+
|
| 106 |
+
if inference_model.model is not None:
|
| 107 |
+
del inference_model.model
|
| 108 |
+
|
| 109 |
+
config_ckpt_path = model_config_dict[model_name]
|
| 110 |
+
|
| 111 |
+
model_config = get_config_from_file(config_ckpt_path["config"])
|
| 112 |
+
if hasattr(model_config, "model"):
|
| 113 |
+
model_config = model_config.model
|
| 114 |
+
|
| 115 |
+
model = instantiate_from_config(model_config, ckpt_path=config_ckpt_path["ckpt_path"])
|
| 116 |
+
model = model.to(device)
|
| 117 |
+
model = model.eval()
|
| 118 |
+
|
| 119 |
+
inference_model.model = model
|
| 120 |
+
inference_model.name = model_name
|
| 121 |
+
|
| 122 |
+
return model
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def prepare_img(image: np.ndarray):
|
| 126 |
+
image_pt = torch.tensor(image).float()
|
| 127 |
+
image_pt = image_pt / 255 * 2 - 1
|
| 128 |
+
image_pt = rearrange(image_pt, "h w c -> c h w")
|
| 129 |
+
|
| 130 |
+
return image_pt
|
| 131 |
+
|
| 132 |
+
def prepare_model_viewer(fp):
|
| 133 |
+
content = f"""
|
| 134 |
+
<head>
|
| 135 |
+
<script
|
| 136 |
+
type="module" src="https://ajax.googleapis.com/ajax/libs/model-viewer/3.1.1/model-viewer.min.js">
|
| 137 |
+
</script>
|
| 138 |
+
</head>
|
| 139 |
+
<body>
|
| 140 |
+
<model-viewer
|
| 141 |
+
style="height: 150px; width: 150px;"
|
| 142 |
+
rotation-per-second="10deg"
|
| 143 |
+
id="t1"
|
| 144 |
+
src="file/gradio_cached_dir/{fp}"
|
| 145 |
+
environment-image="neutral"
|
| 146 |
+
camera-target="0m 0m 0m"
|
| 147 |
+
orientation="0deg 90deg 170deg"
|
| 148 |
+
shadow-intensity="1"
|
| 149 |
+
ar:true
|
| 150 |
+
auto-rotate
|
| 151 |
+
camera-controls>
|
| 152 |
+
</model-viewer>
|
| 153 |
+
</body>
|
| 154 |
+
"""
|
| 155 |
+
return content
|
| 156 |
+
|
| 157 |
+
def prepare_html_frame(content):
|
| 158 |
+
frame = f"""
|
| 159 |
+
<html>
|
| 160 |
+
<body>
|
| 161 |
+
{content}
|
| 162 |
+
</body>
|
| 163 |
+
</html>
|
| 164 |
+
"""
|
| 165 |
+
return frame
|
| 166 |
+
|
| 167 |
+
def prepare_html_body(content):
|
| 168 |
+
frame = f"""
|
| 169 |
+
<body>
|
| 170 |
+
{content}
|
| 171 |
+
</body>
|
| 172 |
+
"""
|
| 173 |
+
return frame
|
| 174 |
+
|
| 175 |
+
def post_process_mesh_outputs(mesh_outputs):
|
| 176 |
+
# html_frame = output_to_html_frame(mesh_outputs, 2 * box_v, image=None, html_frame=True)
|
| 177 |
+
html_content = output_to_html_frame(mesh_outputs, 2 * box_v, image=None, html_frame=False)
|
| 178 |
+
html_frame = prepare_html_frame(html_content)
|
| 179 |
+
|
| 180 |
+
# filename = f"{time.time()}.html"
|
| 181 |
+
filename = f"text-256-{time.time()}.html"
|
| 182 |
+
html_filepath = os.path.join(gradio_cached_dir, filename)
|
| 183 |
+
with open(html_filepath, "w") as writer:
|
| 184 |
+
writer.write(html_frame)
|
| 185 |
+
|
| 186 |
+
'''
|
| 187 |
+
Bug: The iframe tag does not work in Gradio.
|
| 188 |
+
The chrome returns "No resource with given URL found"
|
| 189 |
+
Solutions:
|
| 190 |
+
https://github.com/gradio-app/gradio/issues/884
|
| 191 |
+
Due to the security bitches, the server can only find files parallel to the gradio_app.py.
|
| 192 |
+
The path has format "file/TARGET_FILE_PATH"
|
| 193 |
+
'''
|
| 194 |
+
|
| 195 |
+
iframe_tag = f'<iframe src="file/gradio_cached_dir/{filename}" width="600%" height="400" frameborder="0"></iframe>'
|
| 196 |
+
|
| 197 |
+
filelist = []
|
| 198 |
+
filenames = []
|
| 199 |
+
for i, mesh in enumerate(mesh_outputs):
|
| 200 |
+
mesh.mesh_f = mesh.mesh_f[:, ::-1]
|
| 201 |
+
mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)
|
| 202 |
+
|
| 203 |
+
name = str(i) + "_out_mesh.obj"
|
| 204 |
+
filepath = gradio_cached_dir + "/" + name
|
| 205 |
+
mesh_output.export(filepath, include_normals=True)
|
| 206 |
+
filelist.append(filepath)
|
| 207 |
+
filenames.append(name)
|
| 208 |
+
|
| 209 |
+
filelist.append(html_filepath)
|
| 210 |
+
return iframe_tag, filelist
|
| 211 |
+
|
| 212 |
+
def image2mesh(image: np.ndarray,
|
| 213 |
+
model_name: str = "subsp+pk_asl_perceiver=01_01_udt=03",
|
| 214 |
+
num_samples: int = 4,
|
| 215 |
+
guidance_scale: int = 7.5,
|
| 216 |
+
octree_depth: int = 7):
|
| 217 |
+
global device, gradio_cached_dir, image_model_config_dict, box_v
|
| 218 |
+
|
| 219 |
+
# load model
|
| 220 |
+
model = load_model(model_name, image_model_config_dict, image2mesh_model)
|
| 221 |
+
|
| 222 |
+
# prepare image inputs
|
| 223 |
+
image_pt = prepare_img(image)
|
| 224 |
+
image_pt = repeat(image_pt, "c h w -> b c h w", b=num_samples)
|
| 225 |
+
|
| 226 |
+
sample_inputs = {
|
| 227 |
+
"image": image_pt
|
| 228 |
+
}
|
| 229 |
+
mesh_outputs = model.sample(
|
| 230 |
+
sample_inputs,
|
| 231 |
+
sample_times=1,
|
| 232 |
+
guidance_scale=guidance_scale,
|
| 233 |
+
return_intermediates=False,
|
| 234 |
+
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
|
| 235 |
+
octree_depth=octree_depth,
|
| 236 |
+
)[0]
|
| 237 |
+
|
| 238 |
+
iframe_tag, filelist = post_process_mesh_outputs(mesh_outputs)
|
| 239 |
+
|
| 240 |
+
return iframe_tag, gr.update(value=filelist, visible=True)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def text2mesh(text: str,
|
| 244 |
+
model_name: str = "subsp+pk_asl_perceiver=01_01_udt=03",
|
| 245 |
+
num_samples: int = 4,
|
| 246 |
+
guidance_scale: int = 7.5,
|
| 247 |
+
octree_depth: int = 7):
|
| 248 |
+
global device, gradio_cached_dir, text_model_config_dict, text2mesh_model, box_v
|
| 249 |
+
|
| 250 |
+
# load model
|
| 251 |
+
model = load_model(model_name, text_model_config_dict, text2mesh_model)
|
| 252 |
+
|
| 253 |
+
# prepare text inputs
|
| 254 |
+
sample_inputs = {
|
| 255 |
+
"text": [text] * num_samples
|
| 256 |
+
}
|
| 257 |
+
mesh_outputs = model.sample(
|
| 258 |
+
sample_inputs,
|
| 259 |
+
sample_times=1,
|
| 260 |
+
guidance_scale=guidance_scale,
|
| 261 |
+
return_intermediates=False,
|
| 262 |
+
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
|
| 263 |
+
octree_depth=octree_depth,
|
| 264 |
+
)[0]
|
| 265 |
+
|
| 266 |
+
iframe_tag, filelist = post_process_mesh_outputs(mesh_outputs)
|
| 267 |
+
|
| 268 |
+
return iframe_tag, gr.update(value=filelist, visible=True)
|
| 269 |
+
|
| 270 |
+
example_dir = './gradio_cached_dir/example/img_example'
|
| 271 |
+
|
| 272 |
+
first_page_items = [
|
| 273 |
+
'alita.jpg',
|
| 274 |
+
'burger.jpg'
|
| 275 |
+
'loopy.jpg'
|
| 276 |
+
'building.jpg',
|
| 277 |
+
'mario.jpg',
|
| 278 |
+
'car.jpg',
|
| 279 |
+
'airplane.jpg',
|
| 280 |
+
'bag.jpg',
|
| 281 |
+
'bench.jpg',
|
| 282 |
+
'ship.jpg'
|
| 283 |
+
]
|
| 284 |
+
raw_example_items = [
|
| 285 |
+
# (os.path.join(example_dir, x), x)
|
| 286 |
+
os.path.join(example_dir, x)
|
| 287 |
+
for x in os.listdir(example_dir)
|
| 288 |
+
if x.endswith(('.jpg', '.png'))
|
| 289 |
+
]
|
| 290 |
+
example_items = [x for x in raw_example_items if os.path.basename(x) in first_page_items] + [x for x in raw_example_items if os.path.basename(x) not in first_page_items]
|
| 291 |
+
|
| 292 |
+
example_text = [
|
| 293 |
+
["A 3D model of a car; Audi A6."],
|
| 294 |
+
["A 3D model of police car; Highway Patrol Charger"]
|
| 295 |
+
],
|
| 296 |
+
|
| 297 |
+
def set_cache(data: gr.SelectData):
|
| 298 |
+
img_name = os.path.basename(example_items[data.index])
|
| 299 |
+
return os.path.join(example_dir, img_name), os.path.join(img_name)
|
| 300 |
+
|
| 301 |
+
def disable_cache():
|
| 302 |
+
return ""
|
| 303 |
+
|
| 304 |
+
with gr.Blocks() as app:
|
| 305 |
+
gr.Markdown("# Michelangelo")
|
| 306 |
+
gr.Markdown("## [Github](https://github.com/NeuralCarver/Michelangelo) | [Arxiv](https://arxiv.org/abs/2306.17115) | [Project Page](https://neuralcarver.github.io/michelangelo/)")
|
| 307 |
+
gr.Markdown("Michelangelo is a conditional 3D shape generation system that trains based on the shape-image-text aligned latent representation.")
|
| 308 |
+
gr.Markdown("### Hint:")
|
| 309 |
+
gr.Markdown("1. We provide two APIs: Image-conditioned generation and Text-conditioned generation")
|
| 310 |
+
gr.Markdown("2. Note that the Image-conditioned model is trained on multiple 3D datasets like ShapeNet and Objaverse")
|
| 311 |
+
gr.Markdown("3. We provide some examples for you to try. You can also upload images or text as input.")
|
| 312 |
+
gr.Markdown("4. Welcome to share your amazing results with us, and thanks for your interest in our work!")
|
| 313 |
+
|
| 314 |
+
with gr.Row():
|
| 315 |
+
with gr.Column():
|
| 316 |
+
|
| 317 |
+
with gr.Tab("Image to 3D"):
|
| 318 |
+
img = gr.Image(label="Image")
|
| 319 |
+
gr.Markdown("For the best results, we suggest that the images uploaded meet the following three criteria: 1. The object is positioned at the center of the image, 2. The image size is square, and 3. The background is relatively clean.")
|
| 320 |
+
btn_generate_img2obj = gr.Button(value="Generate")
|
| 321 |
+
|
| 322 |
+
with gr.Accordion("Advanced settings", open=False):
|
| 323 |
+
image_dropdown_models = gr.Dropdown(label="Model", value="ASLDM-256-obj",choices=list(image_model_config_dict.keys()))
|
| 324 |
+
num_samples = gr.Slider(label="samples", value=4, minimum=1, maximum=8, step=1)
|
| 325 |
+
guidance_scale = gr.Slider(label="Guidance scale", value=7.5, minimum=3.0, maximum=10.0, step=0.1)
|
| 326 |
+
octree_depth = gr.Slider(label="Octree Depth (for 3D model)", value=7, minimum=4, maximum=8, step=1)
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
cache_dir = gr.Textbox(value="", visible=False)
|
| 330 |
+
examples = gr.Gallery(label='Examples', value=example_items, elem_id="gallery", allow_preview=False, columns=[4], object_fit="contain")
|
| 331 |
+
|
| 332 |
+
with gr.Tab("Text to 3D"):
|
| 333 |
+
prompt = gr.Textbox(label="Prompt", placeholder="A 3D model of motorcar; Porche Cayenne Turbo.")
|
| 334 |
+
gr.Markdown("For the best results, we suggest that the prompt follows 'A 3D model of CATEGORY; DESCRIPTION'. For example, A 3D model of motorcar; Porche Cayenne Turbo.")
|
| 335 |
+
btn_generate_txt2obj = gr.Button(value="Generate")
|
| 336 |
+
|
| 337 |
+
with gr.Accordion("Advanced settings", open=False):
|
| 338 |
+
text_dropdown_models = gr.Dropdown(label="Model", value="ASLDM-256",choices=list(text_model_config_dict.keys()))
|
| 339 |
+
num_samples = gr.Slider(label="samples", value=4, minimum=1, maximum=8, step=1)
|
| 340 |
+
guidance_scale = gr.Slider(label="Guidance scale", value=7.5, minimum=3.0, maximum=10.0, step=0.1)
|
| 341 |
+
octree_depth = gr.Slider(label="Octree Depth (for 3D model)", value=7, minimum=4, maximum=8, step=1)
|
| 342 |
+
|
| 343 |
+
gr.Markdown("#### Examples:")
|
| 344 |
+
gr.Markdown("1. A 3D model of a coupe; Audi A6.")
|
| 345 |
+
gr.Markdown("2. A 3D model of a motorcar; Hummer H2 SUT.")
|
| 346 |
+
gr.Markdown("3. A 3D model of an airplane; Airbus.")
|
| 347 |
+
gr.Markdown("4. A 3D model of a fighter aircraft; Attack Fighter.")
|
| 348 |
+
gr.Markdown("5. A 3D model of a chair; Simple Wooden Chair.")
|
| 349 |
+
gr.Markdown("6. A 3D model of a laptop computer; Dell Laptop.")
|
| 350 |
+
gr.Markdown("7. A 3D model of a lamp; ceiling light.")
|
| 351 |
+
gr.Markdown("8. A 3D model of a rifle; AK47.")
|
| 352 |
+
gr.Markdown("9. A 3D model of a knife; Sword.")
|
| 353 |
+
gr.Markdown("10. A 3D model of a vase; Plant in pot.")
|
| 354 |
+
|
| 355 |
+
with gr.Column():
|
| 356 |
+
model_3d = gr.HTML()
|
| 357 |
+
file_out = gr.File(label="Files", visible=False)
|
| 358 |
+
|
| 359 |
+
outputs = [model_3d, file_out]
|
| 360 |
+
|
| 361 |
+
img.upload(disable_cache, outputs=cache_dir)
|
| 362 |
+
examples.select(set_cache, outputs=[img, cache_dir])
|
| 363 |
+
print(f'line:404: {cache_dir}')
|
| 364 |
+
btn_generate_img2obj.click(image2mesh, inputs=[img, image_dropdown_models, num_samples,
|
| 365 |
+
guidance_scale, octree_depth],
|
| 366 |
+
outputs=outputs, api_name="generate_img2obj")
|
| 367 |
+
|
| 368 |
+
btn_generate_txt2obj.click(text2mesh, inputs=[prompt, text_dropdown_models, num_samples,
|
| 369 |
+
guidance_scale, octree_depth],
|
| 370 |
+
outputs=outputs, api_name="generate_txt2obj")
|
| 371 |
+
|
| 372 |
+
app.launch(server_name="0.0.0.0", server_port=8008, share=False)
|
gradio_cached_dir/example/img_example/airplane.jpg
ADDED
|
gradio_cached_dir/example/img_example/alita.jpg
ADDED
|
gradio_cached_dir/example/img_example/bag.jpg
ADDED
|
gradio_cached_dir/example/img_example/bench.jpg
ADDED
|
gradio_cached_dir/example/img_example/building.jpg
ADDED
|
gradio_cached_dir/example/img_example/burger.jpg
ADDED
|
gradio_cached_dir/example/img_example/car.jpg
ADDED
|
gradio_cached_dir/example/img_example/loopy.jpg
ADDED
|
gradio_cached_dir/example/img_example/mario.jpg
ADDED
|
gradio_cached_dir/example/img_example/ship.jpg
ADDED
|
inference.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
from collections import OrderedDict
|
| 5 |
+
from typing import Optional, List
|
| 6 |
+
import argparse
|
| 7 |
+
from functools import partial
|
| 8 |
+
|
| 9 |
+
from einops import repeat, rearrange
|
| 10 |
+
import numpy as np
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import trimesh
|
| 13 |
+
import cv2
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import pytorch_lightning as pl
|
| 17 |
+
|
| 18 |
+
from michelangelo.models.tsal.tsal_base import Latent2MeshOutput
|
| 19 |
+
from michelangelo.models.tsal.inference_utils import extract_geometry
|
| 20 |
+
from michelangelo.utils.misc import get_config_from_file, instantiate_from_config
|
| 21 |
+
from michelangelo.utils.visualizers.pythreejs_viewer import PyThreeJSViewer
|
| 22 |
+
from michelangelo.utils.visualizers import html_util
|
| 23 |
+
|
| 24 |
+
def load_model(args):
|
| 25 |
+
|
| 26 |
+
model_config = get_config_from_file(args.config_path)
|
| 27 |
+
if hasattr(model_config, "model"):
|
| 28 |
+
model_config = model_config.model
|
| 29 |
+
|
| 30 |
+
model = instantiate_from_config(model_config, ckpt_path=args.ckpt_path)
|
| 31 |
+
model = model.cuda()
|
| 32 |
+
model = model.eval()
|
| 33 |
+
|
| 34 |
+
return model
|
| 35 |
+
|
| 36 |
+
def load_surface(fp):
|
| 37 |
+
|
| 38 |
+
with np.load(args.pointcloud_path) as input_pc:
|
| 39 |
+
surface = input_pc['points']
|
| 40 |
+
normal = input_pc['normals']
|
| 41 |
+
|
| 42 |
+
rng = np.random.default_rng()
|
| 43 |
+
ind = rng.choice(surface.shape[0], 4096, replace=False)
|
| 44 |
+
surface = torch.FloatTensor(surface[ind])
|
| 45 |
+
normal = torch.FloatTensor(normal[ind])
|
| 46 |
+
|
| 47 |
+
surface = torch.cat([surface, normal], dim=-1).unsqueeze(0).cuda()
|
| 48 |
+
|
| 49 |
+
return surface
|
| 50 |
+
|
| 51 |
+
def prepare_image(args, number_samples=2):
|
| 52 |
+
|
| 53 |
+
image = cv2.imread(f"{args.image_path}")
|
| 54 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 55 |
+
|
| 56 |
+
image_pt = torch.tensor(image).float()
|
| 57 |
+
image_pt = image_pt / 255 * 2 - 1
|
| 58 |
+
image_pt = rearrange(image_pt, "h w c -> c h w")
|
| 59 |
+
|
| 60 |
+
image_pt = repeat(image_pt, "c h w -> b c h w", b=number_samples)
|
| 61 |
+
|
| 62 |
+
return image_pt
|
| 63 |
+
|
| 64 |
+
def save_output(args, mesh_outputs):
|
| 65 |
+
|
| 66 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 67 |
+
for i, mesh in enumerate(mesh_outputs):
|
| 68 |
+
mesh.mesh_f = mesh.mesh_f[:, ::-1]
|
| 69 |
+
mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)
|
| 70 |
+
|
| 71 |
+
name = str(i) + "_out_mesh.obj"
|
| 72 |
+
mesh_output.export(os.path.join(args.output_dir, name), include_normals=True)
|
| 73 |
+
|
| 74 |
+
print(f'-----------------------------------------------------------------------------')
|
| 75 |
+
print(f'>>> Finished and mesh saved in {args.output_dir}')
|
| 76 |
+
print(f'-----------------------------------------------------------------------------')
|
| 77 |
+
|
| 78 |
+
return 0
|
| 79 |
+
|
| 80 |
+
def reconstruction(args, model, bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25), octree_depth=7, num_chunks=10000):
|
| 81 |
+
|
| 82 |
+
surface = load_surface(args.pointcloud_path)
|
| 83 |
+
|
| 84 |
+
# encoding
|
| 85 |
+
shape_embed, shape_latents = model.model.encode_shape_embed(surface, return_latents=True)
|
| 86 |
+
shape_zq, posterior = model.model.shape_model.encode_kl_embed(shape_latents)
|
| 87 |
+
|
| 88 |
+
# decoding
|
| 89 |
+
latents = model.model.shape_model.decode(shape_zq)
|
| 90 |
+
geometric_func = partial(model.model.shape_model.query_geometry, latents=latents)
|
| 91 |
+
|
| 92 |
+
# reconstruction
|
| 93 |
+
mesh_v_f, has_surface = extract_geometry(
|
| 94 |
+
geometric_func=geometric_func,
|
| 95 |
+
device=surface.device,
|
| 96 |
+
batch_size=surface.shape[0],
|
| 97 |
+
bounds=bounds,
|
| 98 |
+
octree_depth=octree_depth,
|
| 99 |
+
num_chunks=num_chunks,
|
| 100 |
+
)
|
| 101 |
+
recon_mesh = trimesh.Trimesh(mesh_v_f[0][0], mesh_v_f[0][1])
|
| 102 |
+
|
| 103 |
+
# save
|
| 104 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 105 |
+
recon_mesh.export(os.path.join(args.output_dir, 'reconstruction.obj'))
|
| 106 |
+
|
| 107 |
+
print(f'-----------------------------------------------------------------------------')
|
| 108 |
+
print(f'>>> Finished and mesh saved in {os.path.join(args.output_dir, "reconstruction.obj")}')
|
| 109 |
+
print(f'-----------------------------------------------------------------------------')
|
| 110 |
+
|
| 111 |
+
return 0
|
| 112 |
+
|
| 113 |
+
def image2mesh(args, model, guidance_scale=7.5, box_v=1.1, octree_depth=7):
|
| 114 |
+
|
| 115 |
+
sample_inputs = {
|
| 116 |
+
"image": prepare_image(args)
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
mesh_outputs = model.sample(
|
| 120 |
+
sample_inputs,
|
| 121 |
+
sample_times=1,
|
| 122 |
+
guidance_scale=guidance_scale,
|
| 123 |
+
return_intermediates=False,
|
| 124 |
+
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
|
| 125 |
+
octree_depth=octree_depth,
|
| 126 |
+
)[0]
|
| 127 |
+
|
| 128 |
+
save_output(args, mesh_outputs)
|
| 129 |
+
|
| 130 |
+
return 0
|
| 131 |
+
|
| 132 |
+
def text2mesh(args, model, num_samples=2, guidance_scale=7.5, box_v=1.1, octree_depth=7):
|
| 133 |
+
|
| 134 |
+
sample_inputs = {
|
| 135 |
+
"text": [args.text] * num_samples
|
| 136 |
+
}
|
| 137 |
+
mesh_outputs = model.sample(
|
| 138 |
+
sample_inputs,
|
| 139 |
+
sample_times=1,
|
| 140 |
+
guidance_scale=guidance_scale,
|
| 141 |
+
return_intermediates=False,
|
| 142 |
+
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
|
| 143 |
+
octree_depth=octree_depth,
|
| 144 |
+
)[0]
|
| 145 |
+
|
| 146 |
+
save_output(args, mesh_outputs)
|
| 147 |
+
|
| 148 |
+
return 0
|
| 149 |
+
|
| 150 |
+
task_dick = {
|
| 151 |
+
'reconstruction': reconstruction,
|
| 152 |
+
'image2mesh': image2mesh,
|
| 153 |
+
'text2mesh': text2mesh,
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
if __name__ == "__main__":
|
| 157 |
+
'''
|
| 158 |
+
1. Reconstruct point cloud
|
| 159 |
+
2. Image-conditioned generation
|
| 160 |
+
3. Text-conditioned generation
|
| 161 |
+
'''
|
| 162 |
+
parser = argparse.ArgumentParser()
|
| 163 |
+
parser.add_argument("--task", type=str, choices=['reconstruction', 'image2mesh', 'text2mesh'], required=True)
|
| 164 |
+
parser.add_argument("--config_path", type=str, required=True)
|
| 165 |
+
parser.add_argument("--ckpt_path", type=str, required=True)
|
| 166 |
+
parser.add_argument("--pointcloud_path", type=str, default='./example_data/surface.npz', help='Path to the input point cloud')
|
| 167 |
+
parser.add_argument("--image_path", type=str, help='Path to the input image')
|
| 168 |
+
parser.add_argument("--text", type=str, help='Input text within a format: A 3D model of motorcar; Porsche 911.')
|
| 169 |
+
parser.add_argument("--output_dir", type=str, default='./output')
|
| 170 |
+
parser.add_argument("-s", "--seed", type=int, default=0)
|
| 171 |
+
args = parser.parse_args()
|
| 172 |
+
|
| 173 |
+
pl.seed_everything(args.seed)
|
| 174 |
+
|
| 175 |
+
print(f'-----------------------------------------------------------------------------')
|
| 176 |
+
print(f'>>> Running {args.task}')
|
| 177 |
+
args.output_dir = os.path.join(args.output_dir, args.task)
|
| 178 |
+
print(f'>>> Output directory: {args.output_dir}')
|
| 179 |
+
print(f'-----------------------------------------------------------------------------')
|
| 180 |
+
|
| 181 |
+
task_dick[args.task](args, load_model(args))
|
michelangelo/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
michelangelo/data/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
michelangelo/data/templates.json
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"shape": [
|
| 3 |
+
"a point cloud model of {}.",
|
| 4 |
+
"There is a {} in the scene.",
|
| 5 |
+
"There is the {} in the scene.",
|
| 6 |
+
"a photo of a {} in the scene.",
|
| 7 |
+
"a photo of the {} in the scene.",
|
| 8 |
+
"a photo of one {} in the scene.",
|
| 9 |
+
"itap of a {}.",
|
| 10 |
+
"itap of my {}.",
|
| 11 |
+
"itap of the {}.",
|
| 12 |
+
"a photo of a {}.",
|
| 13 |
+
"a photo of my {}.",
|
| 14 |
+
"a photo of the {}.",
|
| 15 |
+
"a photo of one {}.",
|
| 16 |
+
"a photo of many {}.",
|
| 17 |
+
"a good photo of a {}.",
|
| 18 |
+
"a good photo of the {}.",
|
| 19 |
+
"a bad photo of a {}.",
|
| 20 |
+
"a bad photo of the {}.",
|
| 21 |
+
"a photo of a nice {}.",
|
| 22 |
+
"a photo of the nice {}.",
|
| 23 |
+
"a photo of a cool {}.",
|
| 24 |
+
"a photo of the cool {}.",
|
| 25 |
+
"a photo of a weird {}.",
|
| 26 |
+
"a photo of the weird {}.",
|
| 27 |
+
"a photo of a small {}.",
|
| 28 |
+
"a photo of the small {}.",
|
| 29 |
+
"a photo of a large {}.",
|
| 30 |
+
"a photo of the large {}.",
|
| 31 |
+
"a photo of a clean {}.",
|
| 32 |
+
"a photo of the clean {}.",
|
| 33 |
+
"a photo of a dirty {}.",
|
| 34 |
+
"a photo of the dirty {}.",
|
| 35 |
+
"a bright photo of a {}.",
|
| 36 |
+
"a bright photo of the {}.",
|
| 37 |
+
"a dark photo of a {}.",
|
| 38 |
+
"a dark photo of the {}.",
|
| 39 |
+
"a photo of a hard to see {}.",
|
| 40 |
+
"a photo of the hard to see {}.",
|
| 41 |
+
"a low resolution photo of a {}.",
|
| 42 |
+
"a low resolution photo of the {}.",
|
| 43 |
+
"a cropped photo of a {}.",
|
| 44 |
+
"a cropped photo of the {}.",
|
| 45 |
+
"a close-up photo of a {}.",
|
| 46 |
+
"a close-up photo of the {}.",
|
| 47 |
+
"a jpeg corrupted photo of a {}.",
|
| 48 |
+
"a jpeg corrupted photo of the {}.",
|
| 49 |
+
"a blurry photo of a {}.",
|
| 50 |
+
"a blurry photo of the {}.",
|
| 51 |
+
"a pixelated photo of a {}.",
|
| 52 |
+
"a pixelated photo of the {}.",
|
| 53 |
+
"a black and white photo of the {}.",
|
| 54 |
+
"a black and white photo of a {}",
|
| 55 |
+
"a plastic {}.",
|
| 56 |
+
"the plastic {}.",
|
| 57 |
+
"a toy {}.",
|
| 58 |
+
"the toy {}.",
|
| 59 |
+
"a plushie {}.",
|
| 60 |
+
"the plushie {}.",
|
| 61 |
+
"a cartoon {}.",
|
| 62 |
+
"the cartoon {}.",
|
| 63 |
+
"an embroidered {}.",
|
| 64 |
+
"the embroidered {}.",
|
| 65 |
+
"a painting of the {}.",
|
| 66 |
+
"a painting of a {}."
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
}
|
michelangelo/data/transforms.py
ADDED
|
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
import numpy as np
|
| 5 |
+
import warnings
|
| 6 |
+
import random
|
| 7 |
+
from omegaconf.listconfig import ListConfig
|
| 8 |
+
from webdataset import pipelinefilter
|
| 9 |
+
import torch
|
| 10 |
+
import torchvision.transforms.functional as TVF
|
| 11 |
+
from torchvision.transforms import InterpolationMode
|
| 12 |
+
from torchvision.transforms.transforms import _interpolation_modes_from_int
|
| 13 |
+
from typing import Sequence
|
| 14 |
+
|
| 15 |
+
from michelangelo.utils import instantiate_from_config
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def _uid_buffer_pick(buf_dict, rng):
|
| 19 |
+
uid_keys = list(buf_dict.keys())
|
| 20 |
+
selected_uid = rng.choice(uid_keys)
|
| 21 |
+
buf = buf_dict[selected_uid]
|
| 22 |
+
|
| 23 |
+
k = rng.randint(0, len(buf) - 1)
|
| 24 |
+
sample = buf[k]
|
| 25 |
+
buf[k] = buf[-1]
|
| 26 |
+
buf.pop()
|
| 27 |
+
|
| 28 |
+
if len(buf) == 0:
|
| 29 |
+
del buf_dict[selected_uid]
|
| 30 |
+
|
| 31 |
+
return sample
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def _add_to_buf_dict(buf_dict, sample):
|
| 35 |
+
key = sample["__key__"]
|
| 36 |
+
uid, uid_sample_id = key.split("_")
|
| 37 |
+
if uid not in buf_dict:
|
| 38 |
+
buf_dict[uid] = []
|
| 39 |
+
buf_dict[uid].append(sample)
|
| 40 |
+
|
| 41 |
+
return buf_dict
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def _uid_shuffle(data, bufsize=1000, initial=100, rng=None, handler=None):
|
| 45 |
+
"""Shuffle the data in the stream.
|
| 46 |
+
|
| 47 |
+
This uses a buffer of size `bufsize`. Shuffling at
|
| 48 |
+
startup is less random; this is traded off against
|
| 49 |
+
yielding samples quickly.
|
| 50 |
+
|
| 51 |
+
data: iterator
|
| 52 |
+
bufsize: buffer size for shuffling
|
| 53 |
+
returns: iterator
|
| 54 |
+
rng: either random module or random.Random instance
|
| 55 |
+
|
| 56 |
+
"""
|
| 57 |
+
if rng is None:
|
| 58 |
+
rng = random.Random(int((os.getpid() + time.time()) * 1e9))
|
| 59 |
+
initial = min(initial, bufsize)
|
| 60 |
+
buf_dict = dict()
|
| 61 |
+
current_samples = 0
|
| 62 |
+
for sample in data:
|
| 63 |
+
_add_to_buf_dict(buf_dict, sample)
|
| 64 |
+
current_samples += 1
|
| 65 |
+
|
| 66 |
+
if current_samples < bufsize:
|
| 67 |
+
try:
|
| 68 |
+
_add_to_buf_dict(buf_dict, next(data)) # skipcq: PYL-R1708
|
| 69 |
+
current_samples += 1
|
| 70 |
+
except StopIteration:
|
| 71 |
+
pass
|
| 72 |
+
|
| 73 |
+
if current_samples >= initial:
|
| 74 |
+
current_samples -= 1
|
| 75 |
+
yield _uid_buffer_pick(buf_dict, rng)
|
| 76 |
+
|
| 77 |
+
while current_samples > 0:
|
| 78 |
+
current_samples -= 1
|
| 79 |
+
yield _uid_buffer_pick(buf_dict, rng)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
uid_shuffle = pipelinefilter(_uid_shuffle)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class RandomSample(object):
|
| 86 |
+
def __init__(self,
|
| 87 |
+
num_volume_samples: int = 1024,
|
| 88 |
+
num_near_samples: int = 1024):
|
| 89 |
+
|
| 90 |
+
super().__init__()
|
| 91 |
+
|
| 92 |
+
self.num_volume_samples = num_volume_samples
|
| 93 |
+
self.num_near_samples = num_near_samples
|
| 94 |
+
|
| 95 |
+
def __call__(self, sample):
|
| 96 |
+
rng = np.random.default_rng()
|
| 97 |
+
|
| 98 |
+
# 1. sample surface input
|
| 99 |
+
total_surface = sample["surface"]
|
| 100 |
+
ind = rng.choice(total_surface.shape[0], replace=False)
|
| 101 |
+
surface = total_surface[ind]
|
| 102 |
+
|
| 103 |
+
# 2. sample volume/near geometric points
|
| 104 |
+
vol_points = sample["vol_points"]
|
| 105 |
+
vol_label = sample["vol_label"]
|
| 106 |
+
near_points = sample["near_points"]
|
| 107 |
+
near_label = sample["near_label"]
|
| 108 |
+
|
| 109 |
+
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
|
| 110 |
+
vol_points = vol_points[ind]
|
| 111 |
+
vol_label = vol_label[ind]
|
| 112 |
+
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)
|
| 113 |
+
|
| 114 |
+
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
|
| 115 |
+
near_points = near_points[ind]
|
| 116 |
+
near_label = near_label[ind]
|
| 117 |
+
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)
|
| 118 |
+
|
| 119 |
+
# concat sampled volume and near points
|
| 120 |
+
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)
|
| 121 |
+
|
| 122 |
+
sample = {
|
| 123 |
+
"surface": surface,
|
| 124 |
+
"geo_points": geo_points
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
return sample
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class SplitRandomSample(object):
|
| 131 |
+
def __init__(self,
|
| 132 |
+
use_surface_sample: bool = False,
|
| 133 |
+
num_surface_samples: int = 4096,
|
| 134 |
+
num_volume_samples: int = 1024,
|
| 135 |
+
num_near_samples: int = 1024):
|
| 136 |
+
|
| 137 |
+
super().__init__()
|
| 138 |
+
|
| 139 |
+
self.use_surface_sample = use_surface_sample
|
| 140 |
+
self.num_surface_samples = num_surface_samples
|
| 141 |
+
self.num_volume_samples = num_volume_samples
|
| 142 |
+
self.num_near_samples = num_near_samples
|
| 143 |
+
|
| 144 |
+
def __call__(self, sample):
|
| 145 |
+
|
| 146 |
+
rng = np.random.default_rng()
|
| 147 |
+
|
| 148 |
+
# 1. sample surface input
|
| 149 |
+
surface = sample["surface"]
|
| 150 |
+
|
| 151 |
+
if self.use_surface_sample:
|
| 152 |
+
replace = surface.shape[0] < self.num_surface_samples
|
| 153 |
+
ind = rng.choice(surface.shape[0], self.num_surface_samples, replace=replace)
|
| 154 |
+
surface = surface[ind]
|
| 155 |
+
|
| 156 |
+
# 2. sample volume/near geometric points
|
| 157 |
+
vol_points = sample["vol_points"]
|
| 158 |
+
vol_label = sample["vol_label"]
|
| 159 |
+
near_points = sample["near_points"]
|
| 160 |
+
near_label = sample["near_label"]
|
| 161 |
+
|
| 162 |
+
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
|
| 163 |
+
vol_points = vol_points[ind]
|
| 164 |
+
vol_label = vol_label[ind]
|
| 165 |
+
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)
|
| 166 |
+
|
| 167 |
+
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
|
| 168 |
+
near_points = near_points[ind]
|
| 169 |
+
near_label = near_label[ind]
|
| 170 |
+
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)
|
| 171 |
+
|
| 172 |
+
# concat sampled volume and near points
|
| 173 |
+
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)
|
| 174 |
+
|
| 175 |
+
sample = {
|
| 176 |
+
"surface": surface,
|
| 177 |
+
"geo_points": geo_points
|
| 178 |
+
}
|
| 179 |
+
|
| 180 |
+
return sample
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class FeatureSelection(object):
|
| 184 |
+
|
| 185 |
+
VALID_SURFACE_FEATURE_DIMS = {
|
| 186 |
+
"none": [0, 1, 2], # xyz
|
| 187 |
+
"watertight_normal": [0, 1, 2, 3, 4, 5], # xyz, normal
|
| 188 |
+
"normal": [0, 1, 2, 6, 7, 8]
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
def __init__(self, surface_feature_type: str):
|
| 192 |
+
|
| 193 |
+
self.surface_feature_type = surface_feature_type
|
| 194 |
+
self.surface_dims = self.VALID_SURFACE_FEATURE_DIMS[surface_feature_type]
|
| 195 |
+
|
| 196 |
+
def __call__(self, sample):
|
| 197 |
+
sample["surface"] = sample["surface"][:, self.surface_dims]
|
| 198 |
+
return sample
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
class AxisScaleTransform(object):
|
| 202 |
+
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
|
| 203 |
+
assert isinstance(interval, (tuple, list, ListConfig))
|
| 204 |
+
self.interval = interval
|
| 205 |
+
self.min_val = interval[0]
|
| 206 |
+
self.max_val = interval[1]
|
| 207 |
+
self.inter_size = interval[1] - interval[0]
|
| 208 |
+
self.jitter = jitter
|
| 209 |
+
self.jitter_scale = jitter_scale
|
| 210 |
+
|
| 211 |
+
def __call__(self, sample):
|
| 212 |
+
|
| 213 |
+
surface = sample["surface"][..., 0:3]
|
| 214 |
+
geo_points = sample["geo_points"][..., 0:3]
|
| 215 |
+
|
| 216 |
+
scaling = torch.rand(1, 3) * self.inter_size + self.min_val
|
| 217 |
+
# print(scaling)
|
| 218 |
+
surface = surface * scaling
|
| 219 |
+
geo_points = geo_points * scaling
|
| 220 |
+
|
| 221 |
+
scale = (1 / torch.abs(surface).max().item()) * 0.999999
|
| 222 |
+
surface *= scale
|
| 223 |
+
geo_points *= scale
|
| 224 |
+
|
| 225 |
+
if self.jitter:
|
| 226 |
+
surface += self.jitter_scale * torch.randn_like(surface)
|
| 227 |
+
surface.clamp_(min=-1.015, max=1.015)
|
| 228 |
+
|
| 229 |
+
sample["surface"][..., 0:3] = surface
|
| 230 |
+
sample["geo_points"][..., 0:3] = geo_points
|
| 231 |
+
|
| 232 |
+
return sample
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
class ToTensor(object):
|
| 236 |
+
|
| 237 |
+
def __init__(self, tensor_keys=("surface", "geo_points", "tex_points")):
|
| 238 |
+
self.tensor_keys = tensor_keys
|
| 239 |
+
|
| 240 |
+
def __call__(self, sample):
|
| 241 |
+
for key in self.tensor_keys:
|
| 242 |
+
if key not in sample:
|
| 243 |
+
continue
|
| 244 |
+
|
| 245 |
+
sample[key] = torch.tensor(sample[key], dtype=torch.float32)
|
| 246 |
+
|
| 247 |
+
return sample
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class AxisScale(object):
|
| 251 |
+
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
|
| 252 |
+
assert isinstance(interval, (tuple, list, ListConfig))
|
| 253 |
+
self.interval = interval
|
| 254 |
+
self.jitter = jitter
|
| 255 |
+
self.jitter_scale = jitter_scale
|
| 256 |
+
|
| 257 |
+
def __call__(self, surface, *args):
|
| 258 |
+
scaling = torch.rand(1, 3) * 0.5 + 0.75
|
| 259 |
+
# print(scaling)
|
| 260 |
+
surface = surface * scaling
|
| 261 |
+
scale = (1 / torch.abs(surface).max().item()) * 0.999999
|
| 262 |
+
surface *= scale
|
| 263 |
+
|
| 264 |
+
args_outputs = []
|
| 265 |
+
for _arg in args:
|
| 266 |
+
_arg = _arg * scaling * scale
|
| 267 |
+
args_outputs.append(_arg)
|
| 268 |
+
|
| 269 |
+
if self.jitter:
|
| 270 |
+
surface += self.jitter_scale * torch.randn_like(surface)
|
| 271 |
+
surface.clamp_(min=-1, max=1)
|
| 272 |
+
|
| 273 |
+
if len(args) == 0:
|
| 274 |
+
return surface
|
| 275 |
+
else:
|
| 276 |
+
return surface, *args_outputs
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
class RandomResize(torch.nn.Module):
|
| 280 |
+
"""Apply randomly Resize with a given probability."""
|
| 281 |
+
|
| 282 |
+
def __init__(
|
| 283 |
+
self,
|
| 284 |
+
size,
|
| 285 |
+
resize_radio=(0.5, 1),
|
| 286 |
+
allow_resize_interpolations=(InterpolationMode.BICUBIC, InterpolationMode.BILINEAR, InterpolationMode.BILINEAR),
|
| 287 |
+
interpolation=InterpolationMode.BICUBIC,
|
| 288 |
+
max_size=None,
|
| 289 |
+
antialias=None,
|
| 290 |
+
):
|
| 291 |
+
super().__init__()
|
| 292 |
+
if not isinstance(size, (int, Sequence)):
|
| 293 |
+
raise TypeError(f"Size should be int or sequence. Got {type(size)}")
|
| 294 |
+
if isinstance(size, Sequence) and len(size) not in (1, 2):
|
| 295 |
+
raise ValueError("If size is a sequence, it should have 1 or 2 values")
|
| 296 |
+
|
| 297 |
+
self.size = size
|
| 298 |
+
self.max_size = max_size
|
| 299 |
+
# Backward compatibility with integer value
|
| 300 |
+
if isinstance(interpolation, int):
|
| 301 |
+
warnings.warn(
|
| 302 |
+
"Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
|
| 303 |
+
"Please use InterpolationMode enum."
|
| 304 |
+
)
|
| 305 |
+
interpolation = _interpolation_modes_from_int(interpolation)
|
| 306 |
+
|
| 307 |
+
self.interpolation = interpolation
|
| 308 |
+
self.antialias = antialias
|
| 309 |
+
|
| 310 |
+
self.resize_radio = resize_radio
|
| 311 |
+
self.allow_resize_interpolations = allow_resize_interpolations
|
| 312 |
+
|
| 313 |
+
def random_resize_params(self):
|
| 314 |
+
radio = torch.rand(1) * (self.resize_radio[1] - self.resize_radio[0]) + self.resize_radio[0]
|
| 315 |
+
|
| 316 |
+
if isinstance(self.size, int):
|
| 317 |
+
size = int(self.size * radio)
|
| 318 |
+
elif isinstance(self.size, Sequence):
|
| 319 |
+
size = list(self.size)
|
| 320 |
+
size = (int(size[0] * radio), int(size[1] * radio))
|
| 321 |
+
else:
|
| 322 |
+
raise RuntimeError()
|
| 323 |
+
|
| 324 |
+
interpolation = self.allow_resize_interpolations[
|
| 325 |
+
torch.randint(low=0, high=len(self.allow_resize_interpolations), size=(1,))
|
| 326 |
+
]
|
| 327 |
+
return size, interpolation
|
| 328 |
+
|
| 329 |
+
def forward(self, img):
|
| 330 |
+
size, interpolation = self.random_resize_params()
|
| 331 |
+
img = TVF.resize(img, size, interpolation, self.max_size, self.antialias)
|
| 332 |
+
img = TVF.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
|
| 333 |
+
return img
|
| 334 |
+
|
| 335 |
+
def __repr__(self) -> str:
|
| 336 |
+
detail = f"(size={self.size}, interpolation={self.interpolation.value},"
|
| 337 |
+
detail += f"max_size={self.max_size}, antialias={self.antialias}), resize_radio={self.resize_radio}"
|
| 338 |
+
return f"{self.__class__.__name__}{detail}"
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class Compose(object):
|
| 342 |
+
"""Composes several transforms together. This transform does not support torchscript.
|
| 343 |
+
Please, see the note below.
|
| 344 |
+
|
| 345 |
+
Args:
|
| 346 |
+
transforms (list of ``Transform`` objects): list of transforms to compose.
|
| 347 |
+
|
| 348 |
+
Example:
|
| 349 |
+
>>> transforms.Compose([
|
| 350 |
+
>>> transforms.CenterCrop(10),
|
| 351 |
+
>>> transforms.ToTensor(),
|
| 352 |
+
>>> ])
|
| 353 |
+
|
| 354 |
+
.. note::
|
| 355 |
+
In order to script the transformations, please use ``torch.nn.Sequential`` as below.
|
| 356 |
+
|
| 357 |
+
>>> transforms = torch.nn.Sequential(
|
| 358 |
+
>>> transforms.CenterCrop(10),
|
| 359 |
+
>>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
| 360 |
+
>>> )
|
| 361 |
+
>>> scripted_transforms = torch.jit.script(transforms)
|
| 362 |
+
|
| 363 |
+
Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
|
| 364 |
+
`lambda` functions or ``PIL.Image``.
|
| 365 |
+
|
| 366 |
+
"""
|
| 367 |
+
|
| 368 |
+
def __init__(self, transforms):
|
| 369 |
+
self.transforms = transforms
|
| 370 |
+
|
| 371 |
+
def __call__(self, *args):
|
| 372 |
+
for t in self.transforms:
|
| 373 |
+
args = t(*args)
|
| 374 |
+
return args
|
| 375 |
+
|
| 376 |
+
def __repr__(self):
|
| 377 |
+
format_string = self.__class__.__name__ + '('
|
| 378 |
+
for t in self.transforms:
|
| 379 |
+
format_string += '\n'
|
| 380 |
+
format_string += ' {0}'.format(t)
|
| 381 |
+
format_string += '\n)'
|
| 382 |
+
return format_string
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
def identity(*args, **kwargs):
|
| 386 |
+
if len(args) == 1:
|
| 387 |
+
return args[0]
|
| 388 |
+
else:
|
| 389 |
+
return args
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
def build_transforms(cfg):
|
| 393 |
+
|
| 394 |
+
if cfg is None:
|
| 395 |
+
return identity
|
| 396 |
+
|
| 397 |
+
transforms = []
|
| 398 |
+
|
| 399 |
+
for transform_name, cfg_instance in cfg.items():
|
| 400 |
+
transform_instance = instantiate_from_config(cfg_instance)
|
| 401 |
+
transforms.append(transform_instance)
|
| 402 |
+
print(f"Build transform: {transform_instance}")
|
| 403 |
+
|
| 404 |
+
transforms = Compose(transforms)
|
| 405 |
+
|
| 406 |
+
return transforms
|
| 407 |
+
|
michelangelo/data/utils.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def worker_init_fn(_):
|
| 8 |
+
worker_info = torch.utils.data.get_worker_info()
|
| 9 |
+
worker_id = worker_info.id
|
| 10 |
+
|
| 11 |
+
# dataset = worker_info.dataset
|
| 12 |
+
# split_size = dataset.num_records // worker_info.num_workers
|
| 13 |
+
# # reset num_records to the true number to retain reliable length information
|
| 14 |
+
# dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
|
| 15 |
+
# current_id = np.random.choice(len(np.random.get_state()[1]), 1)
|
| 16 |
+
# return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
|
| 17 |
+
|
| 18 |
+
return np.random.seed(np.random.get_state()[1][0] + worker_id)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
samples (list[dict]):
|
| 26 |
+
combine_tensors:
|
| 27 |
+
combine_scalars:
|
| 28 |
+
|
| 29 |
+
Returns:
|
| 30 |
+
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
result = {}
|
| 34 |
+
|
| 35 |
+
keys = samples[0].keys()
|
| 36 |
+
|
| 37 |
+
for key in keys:
|
| 38 |
+
result[key] = []
|
| 39 |
+
|
| 40 |
+
for sample in samples:
|
| 41 |
+
for key in keys:
|
| 42 |
+
val = sample[key]
|
| 43 |
+
result[key].append(val)
|
| 44 |
+
|
| 45 |
+
for key in keys:
|
| 46 |
+
val_list = result[key]
|
| 47 |
+
if isinstance(val_list[0], (int, float)):
|
| 48 |
+
if combine_scalars:
|
| 49 |
+
result[key] = np.array(result[key])
|
| 50 |
+
|
| 51 |
+
elif isinstance(val_list[0], torch.Tensor):
|
| 52 |
+
if combine_tensors:
|
| 53 |
+
result[key] = torch.stack(val_list)
|
| 54 |
+
|
| 55 |
+
elif isinstance(val_list[0], np.ndarray):
|
| 56 |
+
if combine_tensors:
|
| 57 |
+
result[key] = np.stack(val_list)
|
| 58 |
+
|
| 59 |
+
return result
|
michelangelo/graphics/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
michelangelo/graphics/primitives/__init__.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from .volume import generate_dense_grid_points
|
| 4 |
+
|
| 5 |
+
from .mesh import (
|
| 6 |
+
MeshOutput,
|
| 7 |
+
save_obj,
|
| 8 |
+
savemeshtes2
|
| 9 |
+
)
|
michelangelo/graphics/primitives/mesh.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import PIL.Image
|
| 7 |
+
from typing import Optional
|
| 8 |
+
|
| 9 |
+
import trimesh
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def save_obj(pointnp_px3, facenp_fx3, fname):
|
| 13 |
+
fid = open(fname, "w")
|
| 14 |
+
write_str = ""
|
| 15 |
+
for pidx, p in enumerate(pointnp_px3):
|
| 16 |
+
pp = p
|
| 17 |
+
write_str += "v %f %f %f\n" % (pp[0], pp[1], pp[2])
|
| 18 |
+
|
| 19 |
+
for i, f in enumerate(facenp_fx3):
|
| 20 |
+
f1 = f + 1
|
| 21 |
+
write_str += "f %d %d %d\n" % (f1[0], f1[1], f1[2])
|
| 22 |
+
fid.write(write_str)
|
| 23 |
+
fid.close()
|
| 24 |
+
return
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def savemeshtes2(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, tex_map, fname):
|
| 28 |
+
fol, na = os.path.split(fname)
|
| 29 |
+
na, _ = os.path.splitext(na)
|
| 30 |
+
|
| 31 |
+
matname = "%s/%s.mtl" % (fol, na)
|
| 32 |
+
fid = open(matname, "w")
|
| 33 |
+
fid.write("newmtl material_0\n")
|
| 34 |
+
fid.write("Kd 1 1 1\n")
|
| 35 |
+
fid.write("Ka 0 0 0\n")
|
| 36 |
+
fid.write("Ks 0.4 0.4 0.4\n")
|
| 37 |
+
fid.write("Ns 10\n")
|
| 38 |
+
fid.write("illum 2\n")
|
| 39 |
+
fid.write("map_Kd %s.png\n" % na)
|
| 40 |
+
fid.close()
|
| 41 |
+
####
|
| 42 |
+
|
| 43 |
+
fid = open(fname, "w")
|
| 44 |
+
fid.write("mtllib %s.mtl\n" % na)
|
| 45 |
+
|
| 46 |
+
for pidx, p in enumerate(pointnp_px3):
|
| 47 |
+
pp = p
|
| 48 |
+
fid.write("v %f %f %f\n" % (pp[0], pp[1], pp[2]))
|
| 49 |
+
|
| 50 |
+
for pidx, p in enumerate(tcoords_px2):
|
| 51 |
+
pp = p
|
| 52 |
+
fid.write("vt %f %f\n" % (pp[0], pp[1]))
|
| 53 |
+
|
| 54 |
+
fid.write("usemtl material_0\n")
|
| 55 |
+
for i, f in enumerate(facenp_fx3):
|
| 56 |
+
f1 = f + 1
|
| 57 |
+
f2 = facetex_fx3[i] + 1
|
| 58 |
+
fid.write("f %d/%d %d/%d %d/%d\n" % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
|
| 59 |
+
fid.close()
|
| 60 |
+
|
| 61 |
+
PIL.Image.fromarray(np.ascontiguousarray(tex_map), "RGB").save(
|
| 62 |
+
os.path.join(fol, "%s.png" % na))
|
| 63 |
+
|
| 64 |
+
return
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class MeshOutput(object):
|
| 68 |
+
|
| 69 |
+
def __init__(self,
|
| 70 |
+
mesh_v: np.ndarray,
|
| 71 |
+
mesh_f: np.ndarray,
|
| 72 |
+
vertex_colors: Optional[np.ndarray] = None,
|
| 73 |
+
uvs: Optional[np.ndarray] = None,
|
| 74 |
+
mesh_tex_idx: Optional[np.ndarray] = None,
|
| 75 |
+
tex_map: Optional[np.ndarray] = None):
|
| 76 |
+
|
| 77 |
+
self.mesh_v = mesh_v
|
| 78 |
+
self.mesh_f = mesh_f
|
| 79 |
+
self.vertex_colors = vertex_colors
|
| 80 |
+
self.uvs = uvs
|
| 81 |
+
self.mesh_tex_idx = mesh_tex_idx
|
| 82 |
+
self.tex_map = tex_map
|
| 83 |
+
|
| 84 |
+
def contain_uv_texture(self):
|
| 85 |
+
return (self.uvs is not None) and (self.mesh_tex_idx is not None) and (self.tex_map is not None)
|
| 86 |
+
|
| 87 |
+
def contain_vertex_colors(self):
|
| 88 |
+
return self.vertex_colors is not None
|
| 89 |
+
|
| 90 |
+
def export(self, fname):
|
| 91 |
+
|
| 92 |
+
if self.contain_uv_texture():
|
| 93 |
+
savemeshtes2(
|
| 94 |
+
self.mesh_v,
|
| 95 |
+
self.uvs,
|
| 96 |
+
self.mesh_f,
|
| 97 |
+
self.mesh_tex_idx,
|
| 98 |
+
self.tex_map,
|
| 99 |
+
fname
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
elif self.contain_vertex_colors():
|
| 103 |
+
mesh_obj = trimesh.Trimesh(vertices=self.mesh_v, faces=self.mesh_f, vertex_colors=self.vertex_colors)
|
| 104 |
+
mesh_obj.export(fname)
|
| 105 |
+
|
| 106 |
+
else:
|
| 107 |
+
save_obj(
|
| 108 |
+
self.mesh_v,
|
| 109 |
+
self.mesh_f,
|
| 110 |
+
fname
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
michelangelo/graphics/primitives/volume.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def generate_dense_grid_points(bbox_min: np.ndarray,
|
| 7 |
+
bbox_max: np.ndarray,
|
| 8 |
+
octree_depth: int,
|
| 9 |
+
indexing: str = "ij"):
|
| 10 |
+
length = bbox_max - bbox_min
|
| 11 |
+
num_cells = np.exp2(octree_depth)
|
| 12 |
+
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
|
| 13 |
+
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
|
| 14 |
+
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
|
| 15 |
+
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
|
| 16 |
+
xyz = np.stack((xs, ys, zs), axis=-1)
|
| 17 |
+
xyz = xyz.reshape(-1, 3)
|
| 18 |
+
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
|
| 19 |
+
|
| 20 |
+
return xyz, grid_size, length
|
| 21 |
+
|
michelangelo/models/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
michelangelo/models/asl_diffusion/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
michelangelo/models/asl_diffusion/asl_diffuser_pl_module.py
ADDED
|
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from omegaconf import DictConfig
|
| 4 |
+
from typing import List, Tuple, Dict, Optional, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from torch.optim import lr_scheduler
|
| 10 |
+
import pytorch_lightning as pl
|
| 11 |
+
from pytorch_lightning.utilities import rank_zero_only
|
| 12 |
+
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
|
| 15 |
+
from diffusers.schedulers import (
|
| 16 |
+
DDPMScheduler,
|
| 17 |
+
DDIMScheduler,
|
| 18 |
+
KarrasVeScheduler,
|
| 19 |
+
DPMSolverMultistepScheduler
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
from michelangelo.utils import instantiate_from_config
|
| 23 |
+
# from michelangelo.models.tsal.tsal_base import ShapeAsLatentPLModule
|
| 24 |
+
from michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentPLModule
|
| 25 |
+
from michelangelo.models.asl_diffusion.inference_utils import ddim_sample
|
| 26 |
+
|
| 27 |
+
SchedulerType = Union[DDIMScheduler, KarrasVeScheduler, DPMSolverMultistepScheduler]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def disabled_train(self, mode=True):
|
| 31 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 32 |
+
does not change anymore."""
|
| 33 |
+
return self
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class ASLDiffuser(pl.LightningModule):
|
| 37 |
+
first_stage_model: Optional[AlignedShapeAsLatentPLModule]
|
| 38 |
+
# cond_stage_model: Optional[Union[nn.Module, pl.LightningModule]]
|
| 39 |
+
model: nn.Module
|
| 40 |
+
|
| 41 |
+
def __init__(self, *,
|
| 42 |
+
first_stage_config,
|
| 43 |
+
denoiser_cfg,
|
| 44 |
+
scheduler_cfg,
|
| 45 |
+
optimizer_cfg,
|
| 46 |
+
loss_cfg,
|
| 47 |
+
first_stage_key: str = "surface",
|
| 48 |
+
cond_stage_key: str = "image",
|
| 49 |
+
cond_stage_trainable: bool = True,
|
| 50 |
+
scale_by_std: bool = False,
|
| 51 |
+
z_scale_factor: float = 1.0,
|
| 52 |
+
ckpt_path: Optional[str] = None,
|
| 53 |
+
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
| 54 |
+
|
| 55 |
+
super().__init__()
|
| 56 |
+
|
| 57 |
+
self.first_stage_key = first_stage_key
|
| 58 |
+
self.cond_stage_key = cond_stage_key
|
| 59 |
+
self.cond_stage_trainable = cond_stage_trainable
|
| 60 |
+
|
| 61 |
+
# 1. initialize first stage.
|
| 62 |
+
# Note: the condition model contained in the first stage model.
|
| 63 |
+
self.first_stage_config = first_stage_config
|
| 64 |
+
self.first_stage_model = None
|
| 65 |
+
# self.instantiate_first_stage(first_stage_config)
|
| 66 |
+
|
| 67 |
+
# 2. initialize conditional stage
|
| 68 |
+
# self.instantiate_cond_stage(cond_stage_config)
|
| 69 |
+
self.cond_stage_model = {
|
| 70 |
+
"image": self.encode_image,
|
| 71 |
+
"image_unconditional_embedding": self.empty_img_cond,
|
| 72 |
+
"text": self.encode_text,
|
| 73 |
+
"text_unconditional_embedding": self.empty_text_cond,
|
| 74 |
+
"surface": self.encode_surface,
|
| 75 |
+
"surface_unconditional_embedding": self.empty_surface_cond,
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
# 3. diffusion model
|
| 79 |
+
self.model = instantiate_from_config(
|
| 80 |
+
denoiser_cfg, device=None, dtype=None
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
self.optimizer_cfg = optimizer_cfg
|
| 84 |
+
|
| 85 |
+
# 4. scheduling strategy
|
| 86 |
+
self.scheduler_cfg = scheduler_cfg
|
| 87 |
+
|
| 88 |
+
self.noise_scheduler: DDPMScheduler = instantiate_from_config(scheduler_cfg.noise)
|
| 89 |
+
self.denoise_scheduler: SchedulerType = instantiate_from_config(scheduler_cfg.denoise)
|
| 90 |
+
|
| 91 |
+
# 5. loss configures
|
| 92 |
+
self.loss_cfg = loss_cfg
|
| 93 |
+
|
| 94 |
+
self.scale_by_std = scale_by_std
|
| 95 |
+
if scale_by_std:
|
| 96 |
+
self.register_buffer("z_scale_factor", torch.tensor(z_scale_factor))
|
| 97 |
+
else:
|
| 98 |
+
self.z_scale_factor = z_scale_factor
|
| 99 |
+
|
| 100 |
+
self.ckpt_path = ckpt_path
|
| 101 |
+
if ckpt_path is not None:
|
| 102 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 103 |
+
|
| 104 |
+
def instantiate_first_stage(self, config):
|
| 105 |
+
model = instantiate_from_config(config)
|
| 106 |
+
self.first_stage_model = model.eval()
|
| 107 |
+
self.first_stage_model.train = disabled_train
|
| 108 |
+
for param in self.first_stage_model.parameters():
|
| 109 |
+
param.requires_grad = False
|
| 110 |
+
|
| 111 |
+
self.first_stage_model = self.first_stage_model.to(self.device)
|
| 112 |
+
|
| 113 |
+
# def instantiate_cond_stage(self, config):
|
| 114 |
+
# if not self.cond_stage_trainable:
|
| 115 |
+
# if config == "__is_first_stage__":
|
| 116 |
+
# print("Using first stage also as cond stage.")
|
| 117 |
+
# self.cond_stage_model = self.first_stage_model
|
| 118 |
+
# elif config == "__is_unconditional__":
|
| 119 |
+
# print(f"Training {self.__class__.__name__} as an unconditional model.")
|
| 120 |
+
# self.cond_stage_model = None
|
| 121 |
+
# # self.be_unconditional = True
|
| 122 |
+
# else:
|
| 123 |
+
# model = instantiate_from_config(config)
|
| 124 |
+
# self.cond_stage_model = model.eval()
|
| 125 |
+
# self.cond_stage_model.train = disabled_train
|
| 126 |
+
# for param in self.cond_stage_model.parameters():
|
| 127 |
+
# param.requires_grad = False
|
| 128 |
+
# else:
|
| 129 |
+
# assert config != "__is_first_stage__"
|
| 130 |
+
# assert config != "__is_unconditional__"
|
| 131 |
+
# model = instantiate_from_config(config)
|
| 132 |
+
# self.cond_stage_model = model
|
| 133 |
+
|
| 134 |
+
def init_from_ckpt(self, path, ignore_keys=()):
|
| 135 |
+
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
| 136 |
+
|
| 137 |
+
keys = list(state_dict.keys())
|
| 138 |
+
for k in keys:
|
| 139 |
+
for ik in ignore_keys:
|
| 140 |
+
if k.startswith(ik):
|
| 141 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 142 |
+
del state_dict[k]
|
| 143 |
+
|
| 144 |
+
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
| 145 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 146 |
+
if len(missing) > 0:
|
| 147 |
+
print(f"Missing Keys: {missing}")
|
| 148 |
+
print(f"Unexpected Keys: {unexpected}")
|
| 149 |
+
|
| 150 |
+
@property
|
| 151 |
+
def zero_rank(self):
|
| 152 |
+
if self._trainer:
|
| 153 |
+
zero_rank = self.trainer.local_rank == 0
|
| 154 |
+
else:
|
| 155 |
+
zero_rank = True
|
| 156 |
+
|
| 157 |
+
return zero_rank
|
| 158 |
+
|
| 159 |
+
def configure_optimizers(self) -> Tuple[List, List]:
|
| 160 |
+
|
| 161 |
+
lr = self.learning_rate
|
| 162 |
+
|
| 163 |
+
trainable_parameters = list(self.model.parameters())
|
| 164 |
+
# if the conditional encoder is trainable
|
| 165 |
+
|
| 166 |
+
# if self.cond_stage_trainable:
|
| 167 |
+
# conditioner_params = [p for p in self.cond_stage_model.parameters() if p.requires_grad]
|
| 168 |
+
# trainable_parameters += conditioner_params
|
| 169 |
+
# print(f"number of trainable conditional parameters: {len(conditioner_params)}.")
|
| 170 |
+
|
| 171 |
+
if self.optimizer_cfg is None:
|
| 172 |
+
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
| 173 |
+
schedulers = []
|
| 174 |
+
else:
|
| 175 |
+
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
| 176 |
+
scheduler_func = instantiate_from_config(
|
| 177 |
+
self.optimizer_cfg.scheduler,
|
| 178 |
+
max_decay_steps=self.trainer.max_steps,
|
| 179 |
+
lr_max=lr
|
| 180 |
+
)
|
| 181 |
+
scheduler = {
|
| 182 |
+
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
| 183 |
+
"interval": "step",
|
| 184 |
+
"frequency": 1
|
| 185 |
+
}
|
| 186 |
+
optimizers = [optimizer]
|
| 187 |
+
schedulers = [scheduler]
|
| 188 |
+
|
| 189 |
+
return optimizers, schedulers
|
| 190 |
+
|
| 191 |
+
@torch.no_grad()
|
| 192 |
+
def encode_text(self, text):
|
| 193 |
+
|
| 194 |
+
b = text.shape[0]
|
| 195 |
+
text_tokens = rearrange(text, "b t l -> (b t) l")
|
| 196 |
+
text_embed = self.first_stage_model.model.encode_text_embed(text_tokens)
|
| 197 |
+
text_embed = rearrange(text_embed, "(b t) d -> b t d", b=b)
|
| 198 |
+
text_embed = text_embed.mean(dim=1)
|
| 199 |
+
text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
| 200 |
+
|
| 201 |
+
return text_embed
|
| 202 |
+
|
| 203 |
+
@torch.no_grad()
|
| 204 |
+
def encode_image(self, img):
|
| 205 |
+
|
| 206 |
+
return self.first_stage_model.model.encode_image_embed(img)
|
| 207 |
+
|
| 208 |
+
@torch.no_grad()
|
| 209 |
+
def encode_surface(self, surface):
|
| 210 |
+
|
| 211 |
+
return self.first_stage_model.model.encode_shape_embed(surface, return_latents=False)
|
| 212 |
+
|
| 213 |
+
@torch.no_grad()
|
| 214 |
+
def empty_text_cond(self, cond):
|
| 215 |
+
|
| 216 |
+
return torch.zeros_like(cond, device=cond.device)
|
| 217 |
+
|
| 218 |
+
@torch.no_grad()
|
| 219 |
+
def empty_img_cond(self, cond):
|
| 220 |
+
|
| 221 |
+
return torch.zeros_like(cond, device=cond.device)
|
| 222 |
+
|
| 223 |
+
@torch.no_grad()
|
| 224 |
+
def empty_surface_cond(self, cond):
|
| 225 |
+
|
| 226 |
+
return torch.zeros_like(cond, device=cond.device)
|
| 227 |
+
|
| 228 |
+
@torch.no_grad()
|
| 229 |
+
def encode_first_stage(self, surface: torch.FloatTensor, sample_posterior=True):
|
| 230 |
+
|
| 231 |
+
z_q = self.first_stage_model.encode(surface, sample_posterior)
|
| 232 |
+
z_q = self.z_scale_factor * z_q
|
| 233 |
+
|
| 234 |
+
return z_q
|
| 235 |
+
|
| 236 |
+
@torch.no_grad()
|
| 237 |
+
def decode_first_stage(self, z_q: torch.FloatTensor, **kwargs):
|
| 238 |
+
|
| 239 |
+
z_q = 1. / self.z_scale_factor * z_q
|
| 240 |
+
latents = self.first_stage_model.decode(z_q, **kwargs)
|
| 241 |
+
return latents
|
| 242 |
+
|
| 243 |
+
@rank_zero_only
|
| 244 |
+
@torch.no_grad()
|
| 245 |
+
def on_train_batch_start(self, batch, batch_idx):
|
| 246 |
+
# only for very first batch
|
| 247 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 \
|
| 248 |
+
and batch_idx == 0 and self.ckpt_path is None:
|
| 249 |
+
# set rescale weight to 1./std of encodings
|
| 250 |
+
print("### USING STD-RESCALING ###")
|
| 251 |
+
|
| 252 |
+
z_q = self.encode_first_stage(batch[self.first_stage_key])
|
| 253 |
+
z = z_q.detach()
|
| 254 |
+
|
| 255 |
+
del self.z_scale_factor
|
| 256 |
+
self.register_buffer("z_scale_factor", 1. / z.flatten().std())
|
| 257 |
+
print(f"setting self.z_scale_factor to {self.z_scale_factor}")
|
| 258 |
+
|
| 259 |
+
print("### USING STD-RESCALING ###")
|
| 260 |
+
|
| 261 |
+
def compute_loss(self, model_outputs, split):
|
| 262 |
+
"""
|
| 263 |
+
|
| 264 |
+
Args:
|
| 265 |
+
model_outputs (dict):
|
| 266 |
+
- x_0:
|
| 267 |
+
- noise:
|
| 268 |
+
- noise_prior:
|
| 269 |
+
- noise_pred:
|
| 270 |
+
- noise_pred_prior:
|
| 271 |
+
|
| 272 |
+
split (str):
|
| 273 |
+
|
| 274 |
+
Returns:
|
| 275 |
+
|
| 276 |
+
"""
|
| 277 |
+
|
| 278 |
+
pred = model_outputs["pred"]
|
| 279 |
+
|
| 280 |
+
if self.noise_scheduler.prediction_type == "epsilon":
|
| 281 |
+
target = model_outputs["noise"]
|
| 282 |
+
elif self.noise_scheduler.prediction_type == "sample":
|
| 283 |
+
target = model_outputs["x_0"]
|
| 284 |
+
else:
|
| 285 |
+
raise NotImplementedError(f"Prediction Type: {self.noise_scheduler.prediction_type} not yet supported.")
|
| 286 |
+
|
| 287 |
+
if self.loss_cfg.loss_type == "l1":
|
| 288 |
+
simple = F.l1_loss(pred, target, reduction="mean")
|
| 289 |
+
elif self.loss_cfg.loss_type in ["mse", "l2"]:
|
| 290 |
+
simple = F.mse_loss(pred, target, reduction="mean")
|
| 291 |
+
else:
|
| 292 |
+
raise NotImplementedError(f"Loss Type: {self.loss_cfg.loss_type} not yet supported.")
|
| 293 |
+
|
| 294 |
+
total_loss = simple
|
| 295 |
+
|
| 296 |
+
loss_dict = {
|
| 297 |
+
f"{split}/total_loss": total_loss.clone().detach(),
|
| 298 |
+
f"{split}/simple": simple.detach(),
|
| 299 |
+
}
|
| 300 |
+
|
| 301 |
+
return total_loss, loss_dict
|
| 302 |
+
|
| 303 |
+
def forward(self, batch):
|
| 304 |
+
"""
|
| 305 |
+
|
| 306 |
+
Args:
|
| 307 |
+
batch:
|
| 308 |
+
|
| 309 |
+
Returns:
|
| 310 |
+
|
| 311 |
+
"""
|
| 312 |
+
|
| 313 |
+
if self.first_stage_model is None:
|
| 314 |
+
self.instantiate_first_stage(self.first_stage_config)
|
| 315 |
+
|
| 316 |
+
latents = self.encode_first_stage(batch[self.first_stage_key])
|
| 317 |
+
|
| 318 |
+
# conditions = self.cond_stage_model.encode(batch[self.cond_stage_key])
|
| 319 |
+
|
| 320 |
+
conditions = self.cond_stage_model[self.cond_stage_key](batch[self.cond_stage_key]).unsqueeze(1)
|
| 321 |
+
|
| 322 |
+
mask = torch.rand((len(conditions), 1, 1), device=conditions.device, dtype=conditions.dtype) >= 0.1
|
| 323 |
+
conditions = conditions * mask.to(conditions)
|
| 324 |
+
|
| 325 |
+
# Sample noise that we"ll add to the latents
|
| 326 |
+
# [batch_size, n_token, latent_dim]
|
| 327 |
+
noise = torch.randn_like(latents)
|
| 328 |
+
bs = latents.shape[0]
|
| 329 |
+
# Sample a random timestep for each motion
|
| 330 |
+
timesteps = torch.randint(
|
| 331 |
+
0,
|
| 332 |
+
self.noise_scheduler.config.num_train_timesteps,
|
| 333 |
+
(bs,),
|
| 334 |
+
device=latents.device,
|
| 335 |
+
)
|
| 336 |
+
timesteps = timesteps.long()
|
| 337 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
| 338 |
+
noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
| 339 |
+
|
| 340 |
+
# diffusion model forward
|
| 341 |
+
noise_pred = self.model(noisy_z, timesteps, conditions)
|
| 342 |
+
|
| 343 |
+
diffusion_outputs = {
|
| 344 |
+
"x_0": noisy_z,
|
| 345 |
+
"noise": noise,
|
| 346 |
+
"pred": noise_pred
|
| 347 |
+
}
|
| 348 |
+
|
| 349 |
+
return diffusion_outputs
|
| 350 |
+
|
| 351 |
+
def training_step(self, batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
| 352 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
| 353 |
+
"""
|
| 354 |
+
|
| 355 |
+
Args:
|
| 356 |
+
batch (dict): the batch sample, and it contains:
|
| 357 |
+
- surface (torch.FloatTensor):
|
| 358 |
+
- image (torch.FloatTensor): if provide, [bs, 3, h, w], item range [0, 1]
|
| 359 |
+
- depth (torch.FloatTensor): if provide, [bs, 1, h, w], item range [-1, 1]
|
| 360 |
+
- normal (torch.FloatTensor): if provide, [bs, 3, h, w], item range [-1, 1]
|
| 361 |
+
- text (list of str):
|
| 362 |
+
|
| 363 |
+
batch_idx (int):
|
| 364 |
+
|
| 365 |
+
optimizer_idx (int):
|
| 366 |
+
|
| 367 |
+
Returns:
|
| 368 |
+
loss (torch.FloatTensor):
|
| 369 |
+
|
| 370 |
+
"""
|
| 371 |
+
|
| 372 |
+
diffusion_outputs = self(batch)
|
| 373 |
+
|
| 374 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "train")
|
| 375 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
| 376 |
+
|
| 377 |
+
return loss
|
| 378 |
+
|
| 379 |
+
def validation_step(self, batch: Dict[str, torch.FloatTensor],
|
| 380 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
| 381 |
+
"""
|
| 382 |
+
|
| 383 |
+
Args:
|
| 384 |
+
batch (dict): the batch sample, and it contains:
|
| 385 |
+
- surface_pc (torch.FloatTensor): [n_pts, 4]
|
| 386 |
+
- surface_feats (torch.FloatTensor): [n_pts, c]
|
| 387 |
+
- text (list of str):
|
| 388 |
+
|
| 389 |
+
batch_idx (int):
|
| 390 |
+
|
| 391 |
+
optimizer_idx (int):
|
| 392 |
+
|
| 393 |
+
Returns:
|
| 394 |
+
loss (torch.FloatTensor):
|
| 395 |
+
|
| 396 |
+
"""
|
| 397 |
+
|
| 398 |
+
diffusion_outputs = self(batch)
|
| 399 |
+
|
| 400 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "val")
|
| 401 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
| 402 |
+
|
| 403 |
+
return loss
|
| 404 |
+
|
| 405 |
+
@torch.no_grad()
|
| 406 |
+
def sample(self,
|
| 407 |
+
batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
| 408 |
+
sample_times: int = 1,
|
| 409 |
+
steps: Optional[int] = None,
|
| 410 |
+
guidance_scale: Optional[float] = None,
|
| 411 |
+
eta: float = 0.0,
|
| 412 |
+
return_intermediates: bool = False, **kwargs):
|
| 413 |
+
|
| 414 |
+
if self.first_stage_model is None:
|
| 415 |
+
self.instantiate_first_stage(self.first_stage_config)
|
| 416 |
+
|
| 417 |
+
if steps is None:
|
| 418 |
+
steps = self.scheduler_cfg.num_inference_steps
|
| 419 |
+
|
| 420 |
+
if guidance_scale is None:
|
| 421 |
+
guidance_scale = self.scheduler_cfg.guidance_scale
|
| 422 |
+
do_classifier_free_guidance = guidance_scale > 0
|
| 423 |
+
|
| 424 |
+
# conditional encode
|
| 425 |
+
xc = batch[self.cond_stage_key]
|
| 426 |
+
# cond = self.cond_stage_model[self.cond_stage_key](xc)
|
| 427 |
+
cond = self.cond_stage_model[self.cond_stage_key](xc).unsqueeze(1)
|
| 428 |
+
|
| 429 |
+
if do_classifier_free_guidance:
|
| 430 |
+
"""
|
| 431 |
+
Note: There are two kinds of uncond for text.
|
| 432 |
+
1: using "" as uncond text; (in SAL diffusion)
|
| 433 |
+
2: zeros_like(cond) as uncond text; (in MDM)
|
| 434 |
+
"""
|
| 435 |
+
# un_cond = self.cond_stage_model.unconditional_embedding(batch_size=len(xc))
|
| 436 |
+
un_cond = self.cond_stage_model[f"{self.cond_stage_key}_unconditional_embedding"](cond)
|
| 437 |
+
# un_cond = torch.zeros_like(cond, device=cond.device)
|
| 438 |
+
cond = torch.cat([un_cond, cond], dim=0)
|
| 439 |
+
|
| 440 |
+
outputs = []
|
| 441 |
+
latents = None
|
| 442 |
+
|
| 443 |
+
if not return_intermediates:
|
| 444 |
+
for _ in range(sample_times):
|
| 445 |
+
sample_loop = ddim_sample(
|
| 446 |
+
self.denoise_scheduler,
|
| 447 |
+
self.model,
|
| 448 |
+
shape=self.first_stage_model.latent_shape,
|
| 449 |
+
cond=cond,
|
| 450 |
+
steps=steps,
|
| 451 |
+
guidance_scale=guidance_scale,
|
| 452 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 453 |
+
device=self.device,
|
| 454 |
+
eta=eta,
|
| 455 |
+
disable_prog=not self.zero_rank
|
| 456 |
+
)
|
| 457 |
+
for sample, t in sample_loop:
|
| 458 |
+
latents = sample
|
| 459 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
| 460 |
+
else:
|
| 461 |
+
|
| 462 |
+
sample_loop = ddim_sample(
|
| 463 |
+
self.denoise_scheduler,
|
| 464 |
+
self.model,
|
| 465 |
+
shape=self.first_stage_model.latent_shape,
|
| 466 |
+
cond=cond,
|
| 467 |
+
steps=steps,
|
| 468 |
+
guidance_scale=guidance_scale,
|
| 469 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 470 |
+
device=self.device,
|
| 471 |
+
eta=eta,
|
| 472 |
+
disable_prog=not self.zero_rank
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
iter_size = steps // sample_times
|
| 476 |
+
i = 0
|
| 477 |
+
for sample, t in sample_loop:
|
| 478 |
+
latents = sample
|
| 479 |
+
if i % iter_size == 0 or i == steps - 1:
|
| 480 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
| 481 |
+
i += 1
|
| 482 |
+
|
| 483 |
+
return outputs
|
michelangelo/models/asl_diffusion/asl_udt.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from typing import Optional
|
| 6 |
+
from diffusers.models.embeddings import Timesteps
|
| 7 |
+
import math
|
| 8 |
+
|
| 9 |
+
from michelangelo.models.modules.transformer_blocks import MLP
|
| 10 |
+
from michelangelo.models.modules.diffusion_transformer import UNetDiffusionTransformer
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class ConditionalASLUDTDenoiser(nn.Module):
|
| 14 |
+
|
| 15 |
+
def __init__(self, *,
|
| 16 |
+
device: Optional[torch.device],
|
| 17 |
+
dtype: Optional[torch.dtype],
|
| 18 |
+
input_channels: int,
|
| 19 |
+
output_channels: int,
|
| 20 |
+
n_ctx: int,
|
| 21 |
+
width: int,
|
| 22 |
+
layers: int,
|
| 23 |
+
heads: int,
|
| 24 |
+
context_dim: int,
|
| 25 |
+
context_ln: bool = True,
|
| 26 |
+
skip_ln: bool = False,
|
| 27 |
+
init_scale: float = 0.25,
|
| 28 |
+
flip_sin_to_cos: bool = False,
|
| 29 |
+
use_checkpoint: bool = False):
|
| 30 |
+
super().__init__()
|
| 31 |
+
|
| 32 |
+
self.use_checkpoint = use_checkpoint
|
| 33 |
+
|
| 34 |
+
init_scale = init_scale * math.sqrt(1.0 / width)
|
| 35 |
+
|
| 36 |
+
self.backbone = UNetDiffusionTransformer(
|
| 37 |
+
device=device,
|
| 38 |
+
dtype=dtype,
|
| 39 |
+
n_ctx=n_ctx,
|
| 40 |
+
width=width,
|
| 41 |
+
layers=layers,
|
| 42 |
+
heads=heads,
|
| 43 |
+
skip_ln=skip_ln,
|
| 44 |
+
init_scale=init_scale,
|
| 45 |
+
use_checkpoint=use_checkpoint
|
| 46 |
+
)
|
| 47 |
+
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
|
| 48 |
+
self.input_proj = nn.Linear(input_channels, width, device=device, dtype=dtype)
|
| 49 |
+
self.output_proj = nn.Linear(width, output_channels, device=device, dtype=dtype)
|
| 50 |
+
|
| 51 |
+
# timestep embedding
|
| 52 |
+
self.time_embed = Timesteps(width, flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=0)
|
| 53 |
+
self.time_proj = MLP(
|
| 54 |
+
device=device, dtype=dtype, width=width, init_scale=init_scale
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
self.context_embed = nn.Sequential(
|
| 58 |
+
nn.LayerNorm(context_dim, device=device, dtype=dtype),
|
| 59 |
+
nn.Linear(context_dim, width, device=device, dtype=dtype),
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
if context_ln:
|
| 63 |
+
self.context_embed = nn.Sequential(
|
| 64 |
+
nn.LayerNorm(context_dim, device=device, dtype=dtype),
|
| 65 |
+
nn.Linear(context_dim, width, device=device, dtype=dtype),
|
| 66 |
+
)
|
| 67 |
+
else:
|
| 68 |
+
self.context_embed = nn.Linear(context_dim, width, device=device, dtype=dtype)
|
| 69 |
+
|
| 70 |
+
def forward(self,
|
| 71 |
+
model_input: torch.FloatTensor,
|
| 72 |
+
timestep: torch.LongTensor,
|
| 73 |
+
context: torch.FloatTensor):
|
| 74 |
+
|
| 75 |
+
r"""
|
| 76 |
+
Args:
|
| 77 |
+
model_input (torch.FloatTensor): [bs, n_data, c]
|
| 78 |
+
timestep (torch.LongTensor): [bs,]
|
| 79 |
+
context (torch.FloatTensor): [bs, context_tokens, c]
|
| 80 |
+
|
| 81 |
+
Returns:
|
| 82 |
+
sample (torch.FloatTensor): [bs, n_data, c]
|
| 83 |
+
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
_, n_data, _ = model_input.shape
|
| 87 |
+
|
| 88 |
+
# 1. time
|
| 89 |
+
t_emb = self.time_proj(self.time_embed(timestep)).unsqueeze(dim=1)
|
| 90 |
+
|
| 91 |
+
# 2. conditions projector
|
| 92 |
+
context = self.context_embed(context)
|
| 93 |
+
|
| 94 |
+
# 3. denoiser
|
| 95 |
+
x = self.input_proj(model_input)
|
| 96 |
+
x = torch.cat([t_emb, context, x], dim=1)
|
| 97 |
+
x = self.backbone(x)
|
| 98 |
+
x = self.ln_post(x)
|
| 99 |
+
x = x[:, -n_data:]
|
| 100 |
+
sample = self.output_proj(x)
|
| 101 |
+
|
| 102 |
+
return sample
|
| 103 |
+
|
| 104 |
+
|
michelangelo/models/asl_diffusion/base.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class BaseDenoiser(nn.Module):
|
| 8 |
+
|
| 9 |
+
def __init__(self):
|
| 10 |
+
super().__init__()
|
| 11 |
+
|
| 12 |
+
def forward(self, x, t, context):
|
| 13 |
+
raise NotImplementedError
|
michelangelo/models/asl_diffusion/clip_asl_diffuser_pl_module.py
ADDED
|
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from omegaconf import DictConfig
|
| 4 |
+
from typing import List, Tuple, Dict, Optional, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from torch.optim import lr_scheduler
|
| 10 |
+
import pytorch_lightning as pl
|
| 11 |
+
from pytorch_lightning.utilities import rank_zero_only
|
| 12 |
+
|
| 13 |
+
from diffusers.schedulers import (
|
| 14 |
+
DDPMScheduler,
|
| 15 |
+
DDIMScheduler,
|
| 16 |
+
KarrasVeScheduler,
|
| 17 |
+
DPMSolverMultistepScheduler
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
from michelangelo.utils import instantiate_from_config
|
| 21 |
+
from michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentPLModule
|
| 22 |
+
from michelangelo.models.asl_diffusion.inference_utils import ddim_sample
|
| 23 |
+
|
| 24 |
+
SchedulerType = Union[DDIMScheduler, KarrasVeScheduler, DPMSolverMultistepScheduler]
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def disabled_train(self, mode=True):
|
| 28 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 29 |
+
does not change anymore."""
|
| 30 |
+
return self
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class ClipASLDiffuser(pl.LightningModule):
|
| 34 |
+
first_stage_model: Optional[AlignedShapeAsLatentPLModule]
|
| 35 |
+
cond_stage_model: Optional[Union[nn.Module, pl.LightningModule]]
|
| 36 |
+
model: nn.Module
|
| 37 |
+
|
| 38 |
+
def __init__(self, *,
|
| 39 |
+
first_stage_config,
|
| 40 |
+
cond_stage_config,
|
| 41 |
+
denoiser_cfg,
|
| 42 |
+
scheduler_cfg,
|
| 43 |
+
optimizer_cfg,
|
| 44 |
+
loss_cfg,
|
| 45 |
+
first_stage_key: str = "surface",
|
| 46 |
+
cond_stage_key: str = "image",
|
| 47 |
+
scale_by_std: bool = False,
|
| 48 |
+
z_scale_factor: float = 1.0,
|
| 49 |
+
ckpt_path: Optional[str] = None,
|
| 50 |
+
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
| 51 |
+
|
| 52 |
+
super().__init__()
|
| 53 |
+
|
| 54 |
+
self.first_stage_key = first_stage_key
|
| 55 |
+
self.cond_stage_key = cond_stage_key
|
| 56 |
+
|
| 57 |
+
# 1. lazy initialize first stage
|
| 58 |
+
self.instantiate_first_stage(first_stage_config)
|
| 59 |
+
|
| 60 |
+
# 2. initialize conditional stage
|
| 61 |
+
self.instantiate_cond_stage(cond_stage_config)
|
| 62 |
+
|
| 63 |
+
# 3. diffusion model
|
| 64 |
+
self.model = instantiate_from_config(
|
| 65 |
+
denoiser_cfg, device=None, dtype=None
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
self.optimizer_cfg = optimizer_cfg
|
| 69 |
+
|
| 70 |
+
# 4. scheduling strategy
|
| 71 |
+
self.scheduler_cfg = scheduler_cfg
|
| 72 |
+
|
| 73 |
+
self.noise_scheduler: DDPMScheduler = instantiate_from_config(scheduler_cfg.noise)
|
| 74 |
+
self.denoise_scheduler: SchedulerType = instantiate_from_config(scheduler_cfg.denoise)
|
| 75 |
+
|
| 76 |
+
# 5. loss configures
|
| 77 |
+
self.loss_cfg = loss_cfg
|
| 78 |
+
|
| 79 |
+
self.scale_by_std = scale_by_std
|
| 80 |
+
if scale_by_std:
|
| 81 |
+
self.register_buffer("z_scale_factor", torch.tensor(z_scale_factor))
|
| 82 |
+
else:
|
| 83 |
+
self.z_scale_factor = z_scale_factor
|
| 84 |
+
|
| 85 |
+
self.ckpt_path = ckpt_path
|
| 86 |
+
if ckpt_path is not None:
|
| 87 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 88 |
+
|
| 89 |
+
def instantiate_non_trainable_model(self, config):
|
| 90 |
+
model = instantiate_from_config(config)
|
| 91 |
+
model = model.eval()
|
| 92 |
+
model.train = disabled_train
|
| 93 |
+
for param in model.parameters():
|
| 94 |
+
param.requires_grad = False
|
| 95 |
+
|
| 96 |
+
return model
|
| 97 |
+
|
| 98 |
+
def instantiate_first_stage(self, first_stage_config):
|
| 99 |
+
self.first_stage_model = self.instantiate_non_trainable_model(first_stage_config)
|
| 100 |
+
self.first_stage_model.set_shape_model_only()
|
| 101 |
+
|
| 102 |
+
def instantiate_cond_stage(self, cond_stage_config):
|
| 103 |
+
self.cond_stage_model = self.instantiate_non_trainable_model(cond_stage_config)
|
| 104 |
+
|
| 105 |
+
def init_from_ckpt(self, path, ignore_keys=()):
|
| 106 |
+
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
| 107 |
+
|
| 108 |
+
keys = list(state_dict.keys())
|
| 109 |
+
for k in keys:
|
| 110 |
+
for ik in ignore_keys:
|
| 111 |
+
if k.startswith(ik):
|
| 112 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 113 |
+
del state_dict[k]
|
| 114 |
+
|
| 115 |
+
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
| 116 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 117 |
+
if len(missing) > 0:
|
| 118 |
+
print(f"Missing Keys: {missing}")
|
| 119 |
+
print(f"Unexpected Keys: {unexpected}")
|
| 120 |
+
|
| 121 |
+
@property
|
| 122 |
+
def zero_rank(self):
|
| 123 |
+
if self._trainer:
|
| 124 |
+
zero_rank = self.trainer.local_rank == 0
|
| 125 |
+
else:
|
| 126 |
+
zero_rank = True
|
| 127 |
+
|
| 128 |
+
return zero_rank
|
| 129 |
+
|
| 130 |
+
def configure_optimizers(self) -> Tuple[List, List]:
|
| 131 |
+
|
| 132 |
+
lr = self.learning_rate
|
| 133 |
+
|
| 134 |
+
trainable_parameters = list(self.model.parameters())
|
| 135 |
+
if self.optimizer_cfg is None:
|
| 136 |
+
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
| 137 |
+
schedulers = []
|
| 138 |
+
else:
|
| 139 |
+
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
| 140 |
+
scheduler_func = instantiate_from_config(
|
| 141 |
+
self.optimizer_cfg.scheduler,
|
| 142 |
+
max_decay_steps=self.trainer.max_steps,
|
| 143 |
+
lr_max=lr
|
| 144 |
+
)
|
| 145 |
+
scheduler = {
|
| 146 |
+
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
| 147 |
+
"interval": "step",
|
| 148 |
+
"frequency": 1
|
| 149 |
+
}
|
| 150 |
+
optimizers = [optimizer]
|
| 151 |
+
schedulers = [scheduler]
|
| 152 |
+
|
| 153 |
+
return optimizers, schedulers
|
| 154 |
+
|
| 155 |
+
@torch.no_grad()
|
| 156 |
+
def encode_first_stage(self, surface: torch.FloatTensor, sample_posterior=True):
|
| 157 |
+
|
| 158 |
+
z_q = self.first_stage_model.encode(surface, sample_posterior)
|
| 159 |
+
z_q = self.z_scale_factor * z_q
|
| 160 |
+
|
| 161 |
+
return z_q
|
| 162 |
+
|
| 163 |
+
@torch.no_grad()
|
| 164 |
+
def decode_first_stage(self, z_q: torch.FloatTensor, **kwargs):
|
| 165 |
+
|
| 166 |
+
z_q = 1. / self.z_scale_factor * z_q
|
| 167 |
+
latents = self.first_stage_model.decode(z_q, **kwargs)
|
| 168 |
+
return latents
|
| 169 |
+
|
| 170 |
+
@rank_zero_only
|
| 171 |
+
@torch.no_grad()
|
| 172 |
+
def on_train_batch_start(self, batch, batch_idx):
|
| 173 |
+
# only for very first batch
|
| 174 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 \
|
| 175 |
+
and batch_idx == 0 and self.ckpt_path is None:
|
| 176 |
+
# set rescale weight to 1./std of encodings
|
| 177 |
+
print("### USING STD-RESCALING ###")
|
| 178 |
+
|
| 179 |
+
z_q = self.encode_first_stage(batch[self.first_stage_key])
|
| 180 |
+
z = z_q.detach()
|
| 181 |
+
|
| 182 |
+
del self.z_scale_factor
|
| 183 |
+
self.register_buffer("z_scale_factor", 1. / z.flatten().std())
|
| 184 |
+
print(f"setting self.z_scale_factor to {self.z_scale_factor}")
|
| 185 |
+
|
| 186 |
+
print("### USING STD-RESCALING ###")
|
| 187 |
+
|
| 188 |
+
def compute_loss(self, model_outputs, split):
|
| 189 |
+
"""
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
model_outputs (dict):
|
| 193 |
+
- x_0:
|
| 194 |
+
- noise:
|
| 195 |
+
- noise_prior:
|
| 196 |
+
- noise_pred:
|
| 197 |
+
- noise_pred_prior:
|
| 198 |
+
|
| 199 |
+
split (str):
|
| 200 |
+
|
| 201 |
+
Returns:
|
| 202 |
+
|
| 203 |
+
"""
|
| 204 |
+
|
| 205 |
+
pred = model_outputs["pred"]
|
| 206 |
+
|
| 207 |
+
if self.noise_scheduler.prediction_type == "epsilon":
|
| 208 |
+
target = model_outputs["noise"]
|
| 209 |
+
elif self.noise_scheduler.prediction_type == "sample":
|
| 210 |
+
target = model_outputs["x_0"]
|
| 211 |
+
else:
|
| 212 |
+
raise NotImplementedError(f"Prediction Type: {self.noise_scheduler.prediction_type} not yet supported.")
|
| 213 |
+
|
| 214 |
+
if self.loss_cfg.loss_type == "l1":
|
| 215 |
+
simple = F.l1_loss(pred, target, reduction="mean")
|
| 216 |
+
elif self.loss_cfg.loss_type in ["mse", "l2"]:
|
| 217 |
+
simple = F.mse_loss(pred, target, reduction="mean")
|
| 218 |
+
else:
|
| 219 |
+
raise NotImplementedError(f"Loss Type: {self.loss_cfg.loss_type} not yet supported.")
|
| 220 |
+
|
| 221 |
+
total_loss = simple
|
| 222 |
+
|
| 223 |
+
loss_dict = {
|
| 224 |
+
f"{split}/total_loss": total_loss.clone().detach(),
|
| 225 |
+
f"{split}/simple": simple.detach(),
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
return total_loss, loss_dict
|
| 229 |
+
|
| 230 |
+
def forward(self, batch):
|
| 231 |
+
"""
|
| 232 |
+
|
| 233 |
+
Args:
|
| 234 |
+
batch:
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
|
| 238 |
+
"""
|
| 239 |
+
|
| 240 |
+
latents = self.encode_first_stage(batch[self.first_stage_key])
|
| 241 |
+
conditions = self.cond_stage_model.encode(batch[self.cond_stage_key])
|
| 242 |
+
|
| 243 |
+
# Sample noise that we"ll add to the latents
|
| 244 |
+
# [batch_size, n_token, latent_dim]
|
| 245 |
+
noise = torch.randn_like(latents)
|
| 246 |
+
bs = latents.shape[0]
|
| 247 |
+
# Sample a random timestep for each motion
|
| 248 |
+
timesteps = torch.randint(
|
| 249 |
+
0,
|
| 250 |
+
self.noise_scheduler.config.num_train_timesteps,
|
| 251 |
+
(bs,),
|
| 252 |
+
device=latents.device,
|
| 253 |
+
)
|
| 254 |
+
timesteps = timesteps.long()
|
| 255 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
| 256 |
+
noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
| 257 |
+
|
| 258 |
+
# diffusion model forward
|
| 259 |
+
noise_pred = self.model(noisy_z, timesteps, conditions)
|
| 260 |
+
|
| 261 |
+
diffusion_outputs = {
|
| 262 |
+
"x_0": noisy_z,
|
| 263 |
+
"noise": noise,
|
| 264 |
+
"pred": noise_pred
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
return diffusion_outputs
|
| 268 |
+
|
| 269 |
+
def training_step(self, batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
| 270 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
| 271 |
+
"""
|
| 272 |
+
|
| 273 |
+
Args:
|
| 274 |
+
batch (dict): the batch sample, and it contains:
|
| 275 |
+
- surface (torch.FloatTensor):
|
| 276 |
+
- image (torch.FloatTensor): if provide, [bs, 3, h, w], item range [0, 1]
|
| 277 |
+
- depth (torch.FloatTensor): if provide, [bs, 1, h, w], item range [-1, 1]
|
| 278 |
+
- normal (torch.FloatTensor): if provide, [bs, 3, h, w], item range [-1, 1]
|
| 279 |
+
- text (list of str):
|
| 280 |
+
|
| 281 |
+
batch_idx (int):
|
| 282 |
+
|
| 283 |
+
optimizer_idx (int):
|
| 284 |
+
|
| 285 |
+
Returns:
|
| 286 |
+
loss (torch.FloatTensor):
|
| 287 |
+
|
| 288 |
+
"""
|
| 289 |
+
|
| 290 |
+
diffusion_outputs = self(batch)
|
| 291 |
+
|
| 292 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "train")
|
| 293 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
| 294 |
+
|
| 295 |
+
return loss
|
| 296 |
+
|
| 297 |
+
def validation_step(self, batch: Dict[str, torch.FloatTensor],
|
| 298 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
| 299 |
+
"""
|
| 300 |
+
|
| 301 |
+
Args:
|
| 302 |
+
batch (dict): the batch sample, and it contains:
|
| 303 |
+
- surface_pc (torch.FloatTensor): [n_pts, 4]
|
| 304 |
+
- surface_feats (torch.FloatTensor): [n_pts, c]
|
| 305 |
+
- text (list of str):
|
| 306 |
+
|
| 307 |
+
batch_idx (int):
|
| 308 |
+
|
| 309 |
+
optimizer_idx (int):
|
| 310 |
+
|
| 311 |
+
Returns:
|
| 312 |
+
loss (torch.FloatTensor):
|
| 313 |
+
|
| 314 |
+
"""
|
| 315 |
+
|
| 316 |
+
diffusion_outputs = self(batch)
|
| 317 |
+
|
| 318 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "val")
|
| 319 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
| 320 |
+
|
| 321 |
+
return loss
|
| 322 |
+
|
| 323 |
+
@torch.no_grad()
|
| 324 |
+
def sample(self,
|
| 325 |
+
batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
| 326 |
+
sample_times: int = 1,
|
| 327 |
+
steps: Optional[int] = None,
|
| 328 |
+
guidance_scale: Optional[float] = None,
|
| 329 |
+
eta: float = 0.0,
|
| 330 |
+
return_intermediates: bool = False, **kwargs):
|
| 331 |
+
|
| 332 |
+
if steps is None:
|
| 333 |
+
steps = self.scheduler_cfg.num_inference_steps
|
| 334 |
+
|
| 335 |
+
if guidance_scale is None:
|
| 336 |
+
guidance_scale = self.scheduler_cfg.guidance_scale
|
| 337 |
+
do_classifier_free_guidance = guidance_scale > 0
|
| 338 |
+
|
| 339 |
+
# conditional encode
|
| 340 |
+
xc = batch[self.cond_stage_key]
|
| 341 |
+
|
| 342 |
+
# print(self.first_stage_model.device, self.cond_stage_model.device, self.device)
|
| 343 |
+
|
| 344 |
+
cond = self.cond_stage_model(xc)
|
| 345 |
+
|
| 346 |
+
if do_classifier_free_guidance:
|
| 347 |
+
un_cond = self.cond_stage_model.unconditional_embedding(batch_size=len(xc))
|
| 348 |
+
cond = torch.cat([un_cond, cond], dim=0)
|
| 349 |
+
|
| 350 |
+
outputs = []
|
| 351 |
+
latents = None
|
| 352 |
+
|
| 353 |
+
if not return_intermediates:
|
| 354 |
+
for _ in range(sample_times):
|
| 355 |
+
sample_loop = ddim_sample(
|
| 356 |
+
self.denoise_scheduler,
|
| 357 |
+
self.model,
|
| 358 |
+
shape=self.first_stage_model.latent_shape,
|
| 359 |
+
cond=cond,
|
| 360 |
+
steps=steps,
|
| 361 |
+
guidance_scale=guidance_scale,
|
| 362 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 363 |
+
device=self.device,
|
| 364 |
+
eta=eta,
|
| 365 |
+
disable_prog=not self.zero_rank
|
| 366 |
+
)
|
| 367 |
+
for sample, t in sample_loop:
|
| 368 |
+
latents = sample
|
| 369 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
| 370 |
+
else:
|
| 371 |
+
|
| 372 |
+
sample_loop = ddim_sample(
|
| 373 |
+
self.denoise_scheduler,
|
| 374 |
+
self.model,
|
| 375 |
+
shape=self.first_stage_model.latent_shape,
|
| 376 |
+
cond=cond,
|
| 377 |
+
steps=steps,
|
| 378 |
+
guidance_scale=guidance_scale,
|
| 379 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 380 |
+
device=self.device,
|
| 381 |
+
eta=eta,
|
| 382 |
+
disable_prog=not self.zero_rank
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
iter_size = steps // sample_times
|
| 386 |
+
i = 0
|
| 387 |
+
for sample, t in sample_loop:
|
| 388 |
+
latents = sample
|
| 389 |
+
if i % iter_size == 0 or i == steps - 1:
|
| 390 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
| 391 |
+
i += 1
|
| 392 |
+
|
| 393 |
+
return outputs
|
michelangelo/models/asl_diffusion/inference_utils.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from typing import Tuple, List, Union, Optional
|
| 6 |
+
from diffusers.schedulers import DDIMScheduler
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
__all__ = ["ddim_sample"]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def ddim_sample(ddim_scheduler: DDIMScheduler,
|
| 13 |
+
diffusion_model: torch.nn.Module,
|
| 14 |
+
shape: Union[List[int], Tuple[int]],
|
| 15 |
+
cond: torch.FloatTensor,
|
| 16 |
+
steps: int,
|
| 17 |
+
eta: float = 0.0,
|
| 18 |
+
guidance_scale: float = 3.0,
|
| 19 |
+
do_classifier_free_guidance: bool = True,
|
| 20 |
+
generator: Optional[torch.Generator] = None,
|
| 21 |
+
device: torch.device = "cuda:0",
|
| 22 |
+
disable_prog: bool = True):
|
| 23 |
+
|
| 24 |
+
assert steps > 0, f"{steps} must > 0."
|
| 25 |
+
|
| 26 |
+
# init latents
|
| 27 |
+
bsz = cond.shape[0]
|
| 28 |
+
if do_classifier_free_guidance:
|
| 29 |
+
bsz = bsz // 2
|
| 30 |
+
|
| 31 |
+
latents = torch.randn(
|
| 32 |
+
(bsz, *shape),
|
| 33 |
+
generator=generator,
|
| 34 |
+
device=cond.device,
|
| 35 |
+
dtype=cond.dtype,
|
| 36 |
+
)
|
| 37 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 38 |
+
latents = latents * ddim_scheduler.init_noise_sigma
|
| 39 |
+
# set timesteps
|
| 40 |
+
ddim_scheduler.set_timesteps(steps)
|
| 41 |
+
timesteps = ddim_scheduler.timesteps.to(device)
|
| 42 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 43 |
+
# eta (η) is only used with the DDIMScheduler, and between [0, 1]
|
| 44 |
+
extra_step_kwargs = {
|
| 45 |
+
"eta": eta,
|
| 46 |
+
"generator": generator
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
# reverse
|
| 50 |
+
for i, t in enumerate(tqdm(timesteps, disable=disable_prog, desc="DDIM Sampling:", leave=False)):
|
| 51 |
+
# expand the latents if we are doing classifier free guidance
|
| 52 |
+
latent_model_input = (
|
| 53 |
+
torch.cat([latents] * 2)
|
| 54 |
+
if do_classifier_free_guidance
|
| 55 |
+
else latents
|
| 56 |
+
)
|
| 57 |
+
# latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
| 58 |
+
# predict the noise residual
|
| 59 |
+
timestep_tensor = torch.tensor([t], dtype=torch.long, device=device)
|
| 60 |
+
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
|
| 61 |
+
noise_pred = diffusion_model.forward(latent_model_input, timestep_tensor, cond)
|
| 62 |
+
|
| 63 |
+
# perform guidance
|
| 64 |
+
if do_classifier_free_guidance:
|
| 65 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 66 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 67 |
+
noise_pred_text - noise_pred_uncond
|
| 68 |
+
)
|
| 69 |
+
# text_embeddings_for_guidance = encoder_hidden_states.chunk(
|
| 70 |
+
# 2)[1] if do_classifier_free_guidance else encoder_hidden_states
|
| 71 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 72 |
+
latents = ddim_scheduler.step(
|
| 73 |
+
noise_pred, t, latents, **extra_step_kwargs
|
| 74 |
+
).prev_sample
|
| 75 |
+
|
| 76 |
+
yield latents, t
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def karra_sample():
|
| 80 |
+
pass
|
michelangelo/models/conditional_encoders/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from .clip import CLIPEncoder
|
michelangelo/models/conditional_encoders/clip.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from torchvision.transforms import Normalize
|
| 8 |
+
from transformers import CLIPModel, CLIPTokenizer
|
| 9 |
+
from transformers.utils import ModelOutput
|
| 10 |
+
from typing import Iterable, Optional, Union, List
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
ImageType = Union[np.ndarray, torch.Tensor, Image.Image]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@dataclass
|
| 17 |
+
class CLIPEmbedOutput(ModelOutput):
|
| 18 |
+
last_hidden_state: torch.FloatTensor = None
|
| 19 |
+
pooler_output: torch.FloatTensor = None
|
| 20 |
+
embeds: torch.FloatTensor = None
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class CLIPEncoder(torch.nn.Module):
|
| 24 |
+
|
| 25 |
+
def __init__(self, model_path="openai/clip-vit-base-patch32"):
|
| 26 |
+
|
| 27 |
+
super().__init__()
|
| 28 |
+
|
| 29 |
+
# Load the CLIP model and processor
|
| 30 |
+
self.model: CLIPModel = CLIPModel.from_pretrained(model_path)
|
| 31 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model_path)
|
| 32 |
+
self.image_preprocess = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 33 |
+
|
| 34 |
+
self.model.training = False
|
| 35 |
+
for p in self.model.parameters():
|
| 36 |
+
p.requires_grad = False
|
| 37 |
+
|
| 38 |
+
@torch.no_grad()
|
| 39 |
+
def encode_image(self, images: Iterable[Optional[ImageType]]):
|
| 40 |
+
pixel_values = self.image_preprocess(images)
|
| 41 |
+
|
| 42 |
+
vision_outputs = self.model.vision_model(pixel_values=pixel_values)
|
| 43 |
+
|
| 44 |
+
pooler_output = vision_outputs[1] # pooled_output
|
| 45 |
+
image_features = self.model.visual_projection(pooler_output)
|
| 46 |
+
|
| 47 |
+
visual_embeds = CLIPEmbedOutput(
|
| 48 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
| 49 |
+
pooler_output=pooler_output,
|
| 50 |
+
embeds=image_features
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
return visual_embeds
|
| 54 |
+
|
| 55 |
+
@torch.no_grad()
|
| 56 |
+
def encode_text(self, texts: List[str]):
|
| 57 |
+
text_inputs = self.tokenizer(texts, padding=True, return_tensors="pt")
|
| 58 |
+
|
| 59 |
+
text_outputs = self.model.text_model(input_ids=text_inputs)
|
| 60 |
+
|
| 61 |
+
pooler_output = text_outputs[1] # pooled_output
|
| 62 |
+
text_features = self.model.text_projection(pooler_output)
|
| 63 |
+
|
| 64 |
+
text_embeds = CLIPEmbedOutput(
|
| 65 |
+
last_hidden_state=text_outputs.last_hidden_state,
|
| 66 |
+
pooler_output=pooler_output,
|
| 67 |
+
embeds=text_features
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return text_embeds
|
| 71 |
+
|
| 72 |
+
def forward(self,
|
| 73 |
+
images: Iterable[Optional[ImageType]],
|
| 74 |
+
texts: List[str]):
|
| 75 |
+
|
| 76 |
+
visual_embeds = self.encode_image(images)
|
| 77 |
+
text_embeds = self.encode_text(texts)
|
| 78 |
+
|
| 79 |
+
return visual_embeds, text_embeds
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
michelangelo/models/conditional_encoders/encoder_factory.py
ADDED
|
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torchvision import transforms
|
| 7 |
+
from transformers import CLIPModel, CLIPTokenizer
|
| 8 |
+
from collections import OrderedDict
|
| 9 |
+
|
| 10 |
+
from michelangelo.data.transforms import RandomResize
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class AbstractEncoder(nn.Module):
|
| 14 |
+
embedding_dim: int
|
| 15 |
+
|
| 16 |
+
def __init__(self):
|
| 17 |
+
super().__init__()
|
| 18 |
+
|
| 19 |
+
def encode(self, *args, **kwargs):
|
| 20 |
+
raise NotImplementedError
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class ClassEmbedder(nn.Module):
|
| 24 |
+
def __init__(self, embed_dim, n_classes=1000, key="class"):
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.key = key
|
| 27 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
| 28 |
+
|
| 29 |
+
def forward(self, batch, key=None):
|
| 30 |
+
if key is None:
|
| 31 |
+
key = self.key
|
| 32 |
+
# this is for use in crossattn
|
| 33 |
+
c = batch[key][:, None]
|
| 34 |
+
c = self.embedding(c)
|
| 35 |
+
return c
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class FrozenCLIPTextEmbedder(AbstractEncoder):
|
| 39 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
| 40 |
+
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
version="openai/clip-vit-large-patch14",
|
| 44 |
+
tokenizer_version=None,
|
| 45 |
+
device="cuda",
|
| 46 |
+
max_length=77,
|
| 47 |
+
zero_embedding_radio: float = 0.1,
|
| 48 |
+
):
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_version or version)
|
| 51 |
+
|
| 52 |
+
self.device = device
|
| 53 |
+
self.max_length = max_length
|
| 54 |
+
self.zero_embedding_radio = zero_embedding_radio
|
| 55 |
+
|
| 56 |
+
self.clip_dict = OrderedDict()
|
| 57 |
+
self.clip_name = os.path.split(version)[-1]
|
| 58 |
+
|
| 59 |
+
transformer = CLIPModel.from_pretrained(version).text_model
|
| 60 |
+
|
| 61 |
+
for param in transformer.parameters():
|
| 62 |
+
param.requires_grad = False
|
| 63 |
+
self.clip_dict[self.clip_name] = transformer
|
| 64 |
+
|
| 65 |
+
self._move_flag = False
|
| 66 |
+
|
| 67 |
+
@property
|
| 68 |
+
def clip(self):
|
| 69 |
+
return self.clip_dict[self.clip_name]
|
| 70 |
+
|
| 71 |
+
def move(self):
|
| 72 |
+
if self._move_flag:
|
| 73 |
+
return
|
| 74 |
+
|
| 75 |
+
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
| 76 |
+
self._move_flag = True
|
| 77 |
+
|
| 78 |
+
def unconditional_embedding(self, batch_size):
|
| 79 |
+
empty_text = [""] * batch_size
|
| 80 |
+
empty_z = self.forward(empty_text)
|
| 81 |
+
return empty_z
|
| 82 |
+
|
| 83 |
+
def forward(self, text):
|
| 84 |
+
self.move()
|
| 85 |
+
|
| 86 |
+
batch_encoding = self.tokenizer(
|
| 87 |
+
text,
|
| 88 |
+
truncation=True,
|
| 89 |
+
max_length=self.max_length,
|
| 90 |
+
return_length=True,
|
| 91 |
+
return_overflowing_tokens=False,
|
| 92 |
+
padding="max_length",
|
| 93 |
+
return_tensors="pt",
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
| 97 |
+
outputs = self.clip(input_ids=tokens)
|
| 98 |
+
|
| 99 |
+
z = outputs.last_hidden_state
|
| 100 |
+
return z
|
| 101 |
+
|
| 102 |
+
def encode(self, text):
|
| 103 |
+
batch_size = len(text)
|
| 104 |
+
batch_mask = torch.rand((batch_size,))
|
| 105 |
+
for i in range(batch_size):
|
| 106 |
+
if batch_mask[i] < self.zero_embedding_radio:
|
| 107 |
+
text[i] = ""
|
| 108 |
+
|
| 109 |
+
return self(text)
|
| 110 |
+
|
| 111 |
+
class FrozenAlignedCLIPTextEmbedder(AbstractEncoder):
|
| 112 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
| 113 |
+
|
| 114 |
+
def __init__(
|
| 115 |
+
self,
|
| 116 |
+
version="openai/clip-vit-large-patch14",
|
| 117 |
+
tokenizer_version=None,
|
| 118 |
+
device="cuda",
|
| 119 |
+
max_length=77,
|
| 120 |
+
zero_embedding_radio: float = 0.1,
|
| 121 |
+
):
|
| 122 |
+
super().__init__()
|
| 123 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_version or version)
|
| 124 |
+
|
| 125 |
+
self.device = device
|
| 126 |
+
self.max_length = max_length
|
| 127 |
+
self.zero_embedding_radio = zero_embedding_radio
|
| 128 |
+
|
| 129 |
+
self.clip_dict = OrderedDict()
|
| 130 |
+
self.clip_name = os.path.split(version)[-1]
|
| 131 |
+
|
| 132 |
+
transformer = CLIPModel.from_pretrained(version).text_model
|
| 133 |
+
|
| 134 |
+
for param in transformer.parameters():
|
| 135 |
+
param.requires_grad = False
|
| 136 |
+
self.clip_dict[self.clip_name] = transformer
|
| 137 |
+
|
| 138 |
+
self._move_flag = False
|
| 139 |
+
|
| 140 |
+
@property
|
| 141 |
+
def clip(self):
|
| 142 |
+
return self.clip_dict[self.clip_name]
|
| 143 |
+
|
| 144 |
+
def move(self):
|
| 145 |
+
if self._move_flag:
|
| 146 |
+
return
|
| 147 |
+
|
| 148 |
+
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
| 149 |
+
self._move_flag = True
|
| 150 |
+
|
| 151 |
+
def unconditional_embedding(self, batch_size):
|
| 152 |
+
empty_text = [""] * batch_size
|
| 153 |
+
empty_z = self.forward(empty_text)
|
| 154 |
+
return empty_z
|
| 155 |
+
|
| 156 |
+
def forward(self, text):
|
| 157 |
+
self.move()
|
| 158 |
+
|
| 159 |
+
batch_encoding = self.tokenizer(
|
| 160 |
+
text,
|
| 161 |
+
truncation=True,
|
| 162 |
+
max_length=self.max_length,
|
| 163 |
+
return_length=True,
|
| 164 |
+
return_overflowing_tokens=False,
|
| 165 |
+
padding="max_length",
|
| 166 |
+
return_tensors="pt",
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
| 170 |
+
outputs = self.clip(input_ids=tokens)
|
| 171 |
+
|
| 172 |
+
z = outputs.last_hidden_state
|
| 173 |
+
return z
|
| 174 |
+
|
| 175 |
+
def encode(self, text):
|
| 176 |
+
batch_size = len(text)
|
| 177 |
+
batch_mask = torch.rand((batch_size,))
|
| 178 |
+
for i in range(batch_size):
|
| 179 |
+
if batch_mask[i] < self.zero_embedding_radio:
|
| 180 |
+
text[i] = ""
|
| 181 |
+
|
| 182 |
+
return self(text)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class FrozenCLIPImageEmbedder(AbstractEncoder):
|
| 186 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
| 187 |
+
|
| 188 |
+
def __init__(
|
| 189 |
+
self,
|
| 190 |
+
version="openai/clip-vit-large-patch14",
|
| 191 |
+
device="cuda",
|
| 192 |
+
zero_embedding_radio=0.1,
|
| 193 |
+
normalize_embedding=True,
|
| 194 |
+
num_projection_vector=0,
|
| 195 |
+
linear_mapping_bias=True,
|
| 196 |
+
reverse_visual_projection=False,
|
| 197 |
+
):
|
| 198 |
+
super().__init__()
|
| 199 |
+
|
| 200 |
+
self.device = device
|
| 201 |
+
|
| 202 |
+
self.clip_dict = OrderedDict()
|
| 203 |
+
self.clip_name = os.path.split(version)[-1]
|
| 204 |
+
|
| 205 |
+
clip_model = CLIPModel.from_pretrained(version)
|
| 206 |
+
clip_model.text_model = None
|
| 207 |
+
clip_model.text_projection = None
|
| 208 |
+
clip_model = clip_model.eval()
|
| 209 |
+
for param in self.parameters():
|
| 210 |
+
param.requires_grad = False
|
| 211 |
+
self.clip_dict[self.clip_name] = clip_model
|
| 212 |
+
|
| 213 |
+
self.transform = transforms.Compose(
|
| 214 |
+
[
|
| 215 |
+
transforms.Resize(224, transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 216 |
+
transforms.CenterCrop(224), # crop a (224, 224) square
|
| 217 |
+
transforms.Normalize(
|
| 218 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
| 219 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
| 220 |
+
),
|
| 221 |
+
]
|
| 222 |
+
)
|
| 223 |
+
self.zero_embedding_radio = zero_embedding_radio
|
| 224 |
+
|
| 225 |
+
self.num_projection_vector = num_projection_vector
|
| 226 |
+
self.reverse_visual_projection = reverse_visual_projection
|
| 227 |
+
self.normalize_embedding = normalize_embedding
|
| 228 |
+
|
| 229 |
+
embedding_dim = (
|
| 230 |
+
clip_model.visual_projection.in_features
|
| 231 |
+
if reverse_visual_projection
|
| 232 |
+
else clip_model.visual_projection.out_features
|
| 233 |
+
)
|
| 234 |
+
self.embedding_dim = embedding_dim
|
| 235 |
+
if self.num_projection_vector > 0:
|
| 236 |
+
self.projection = nn.Linear(
|
| 237 |
+
embedding_dim,
|
| 238 |
+
clip_model.visual_projection.out_features * num_projection_vector,
|
| 239 |
+
bias=linear_mapping_bias,
|
| 240 |
+
)
|
| 241 |
+
nn.init.normal_(self.projection.weight, std=embedding_dim ** -0.5)
|
| 242 |
+
|
| 243 |
+
self._move_flag = False
|
| 244 |
+
|
| 245 |
+
@property
|
| 246 |
+
def clip(self):
|
| 247 |
+
return self.clip_dict[self.clip_name]
|
| 248 |
+
|
| 249 |
+
def unconditional_embedding(self, batch_size):
|
| 250 |
+
zero = torch.zeros(
|
| 251 |
+
batch_size,
|
| 252 |
+
1,
|
| 253 |
+
self.embedding_dim,
|
| 254 |
+
device=self.device,
|
| 255 |
+
dtype=self.clip.visual_projection.weight.dtype,
|
| 256 |
+
)
|
| 257 |
+
if self.num_projection_vector > 0:
|
| 258 |
+
zero = self.projection(zero).view(batch_size, self.num_projection_vector, -1)
|
| 259 |
+
return zero
|
| 260 |
+
|
| 261 |
+
def forward(self, image, value_range=(-1, 1), zero_embedding_radio=0):
|
| 262 |
+
if value_range is not None:
|
| 263 |
+
low, high = value_range
|
| 264 |
+
image = (image - low) / (high - low)
|
| 265 |
+
|
| 266 |
+
image = image.to(self.device, dtype=self.clip.visual_projection.weight.dtype)
|
| 267 |
+
|
| 268 |
+
if self.reverse_visual_projection:
|
| 269 |
+
z = self.clip.vision_model(self.transform(image))[1]
|
| 270 |
+
else:
|
| 271 |
+
z = self.clip.get_image_features(self.transform(image))
|
| 272 |
+
|
| 273 |
+
if self.normalize_embedding:
|
| 274 |
+
z = z / z.norm(dim=-1, keepdim=True)
|
| 275 |
+
if z.ndim == 2:
|
| 276 |
+
z = z.unsqueeze(dim=-2)
|
| 277 |
+
|
| 278 |
+
if zero_embedding_radio > 0:
|
| 279 |
+
mask = torch.rand((len(image), 1, 1), device=z.device, dtype=z.dtype) < zero_embedding_radio
|
| 280 |
+
z = z * mask.to(z)
|
| 281 |
+
|
| 282 |
+
if self.num_projection_vector > 0:
|
| 283 |
+
z = self.projection(z).view(len(image), self.num_projection_vector, -1)
|
| 284 |
+
|
| 285 |
+
return z
|
| 286 |
+
|
| 287 |
+
def move(self):
|
| 288 |
+
if self._move_flag:
|
| 289 |
+
return
|
| 290 |
+
|
| 291 |
+
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
| 292 |
+
self._move_flag = True
|
| 293 |
+
|
| 294 |
+
def encode(self, image):
|
| 295 |
+
self.move()
|
| 296 |
+
return self(image, zero_embedding_radio=self.zero_embedding_radio)
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
class FrozenCLIPImageGridEmbedder(AbstractEncoder):
|
| 300 |
+
|
| 301 |
+
def __init__(
|
| 302 |
+
self,
|
| 303 |
+
version="openai/clip-vit-large-patch14",
|
| 304 |
+
device="cuda",
|
| 305 |
+
zero_embedding_radio=0.1,
|
| 306 |
+
):
|
| 307 |
+
super().__init__()
|
| 308 |
+
|
| 309 |
+
self.device = device
|
| 310 |
+
|
| 311 |
+
self.clip_dict = OrderedDict()
|
| 312 |
+
self.clip_name = os.path.split(version)[-1]
|
| 313 |
+
|
| 314 |
+
clip_model: CLIPModel = CLIPModel.from_pretrained(version)
|
| 315 |
+
clip_model.text_model = None
|
| 316 |
+
clip_model.text_projection = None
|
| 317 |
+
clip_model = clip_model.eval()
|
| 318 |
+
for param in self.parameters():
|
| 319 |
+
param.requires_grad = False
|
| 320 |
+
self.clip_dict[self.clip_name] = clip_model
|
| 321 |
+
|
| 322 |
+
self.transform = transforms.Compose(
|
| 323 |
+
[
|
| 324 |
+
transforms.Resize(224, transforms.InterpolationMode.BILINEAR, antialias=True),
|
| 325 |
+
transforms.CenterCrop(224), # crop a (224, 224) square
|
| 326 |
+
transforms.Normalize(
|
| 327 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
| 328 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
| 329 |
+
),
|
| 330 |
+
]
|
| 331 |
+
)
|
| 332 |
+
self.zero_embedding_radio = zero_embedding_radio
|
| 333 |
+
self.embedding_dim = clip_model.vision_embed_dim
|
| 334 |
+
|
| 335 |
+
self._move_flag = False
|
| 336 |
+
|
| 337 |
+
@property
|
| 338 |
+
def clip(self):
|
| 339 |
+
return self.clip_dict[self.clip_name]
|
| 340 |
+
|
| 341 |
+
def move(self):
|
| 342 |
+
if self._move_flag:
|
| 343 |
+
return
|
| 344 |
+
|
| 345 |
+
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
| 346 |
+
self._move_flag = True
|
| 347 |
+
|
| 348 |
+
def unconditional_embedding(self, batch_size):
|
| 349 |
+
zero = torch.zeros(
|
| 350 |
+
batch_size,
|
| 351 |
+
self.clip.vision_model.embeddings.num_positions,
|
| 352 |
+
self.embedding_dim,
|
| 353 |
+
device=self.device,
|
| 354 |
+
dtype=self.clip.visual_projection.weight.dtype,
|
| 355 |
+
)
|
| 356 |
+
return zero
|
| 357 |
+
|
| 358 |
+
def forward(self, image, value_range=(-1, 1), zero_embedding_radio=0):
|
| 359 |
+
self.move()
|
| 360 |
+
|
| 361 |
+
if value_range is not None:
|
| 362 |
+
low, high = value_range
|
| 363 |
+
image = (image - low) / (high - low)
|
| 364 |
+
|
| 365 |
+
image = image.to(self.device, dtype=self.clip.visual_projection.weight.dtype)
|
| 366 |
+
|
| 367 |
+
z = self.clip.vision_model(self.transform(image)).last_hidden_state
|
| 368 |
+
|
| 369 |
+
if zero_embedding_radio > 0:
|
| 370 |
+
mask = torch.rand((len(image), 1, 1), device=z.device, dtype=z.dtype) >= zero_embedding_radio
|
| 371 |
+
z = z * mask.to(z)
|
| 372 |
+
|
| 373 |
+
return z
|
| 374 |
+
|
| 375 |
+
def encode(self, image):
|
| 376 |
+
return self(image, zero_embedding_radio=self.zero_embedding_radio)
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
class MoECLIPImageEncoder(nn.Module):
|
| 380 |
+
def __init__(
|
| 381 |
+
self,
|
| 382 |
+
versions,
|
| 383 |
+
hidden_state_dim,
|
| 384 |
+
num_projection_vector=8,
|
| 385 |
+
zero_embedding_radio=0.1,
|
| 386 |
+
device="cuda",
|
| 387 |
+
precision="fp16",
|
| 388 |
+
normalize=False,
|
| 389 |
+
clip_max=0,
|
| 390 |
+
transform_type="base",
|
| 391 |
+
argument_p=0.2,
|
| 392 |
+
):
|
| 393 |
+
super().__init__()
|
| 394 |
+
|
| 395 |
+
self.device = torch.device(device)
|
| 396 |
+
self.hidden_state_dim = hidden_state_dim
|
| 397 |
+
self.zero_embedding_radio = zero_embedding_radio
|
| 398 |
+
self.num_projection_vector = num_projection_vector
|
| 399 |
+
self.dtype = dict(fp16=torch.float16, fp32=torch.float32, bf16=torch.bfloat16)[precision]
|
| 400 |
+
self.normalize = normalize
|
| 401 |
+
self.clip_max = clip_max
|
| 402 |
+
|
| 403 |
+
if transform_type == "base":
|
| 404 |
+
self.transform = transforms.Compose(
|
| 405 |
+
[
|
| 406 |
+
transforms.Resize(224, transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 407 |
+
transforms.CenterCrop(224), # crop a (224, 224) square
|
| 408 |
+
transforms.Normalize(
|
| 409 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
| 410 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
| 411 |
+
),
|
| 412 |
+
]
|
| 413 |
+
)
|
| 414 |
+
elif transform_type == "crop_blur_resize":
|
| 415 |
+
self.transform = transforms.Compose(
|
| 416 |
+
[
|
| 417 |
+
transforms.Resize(224, transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 418 |
+
transforms.CenterCrop(224), # crop a (224, 224) square
|
| 419 |
+
transforms.RandomApply(
|
| 420 |
+
transforms=[
|
| 421 |
+
transforms.RandomResizedCrop(
|
| 422 |
+
size=224,
|
| 423 |
+
scale=(0.8, 1.0),
|
| 424 |
+
ratio=(0.99, 1.01),
|
| 425 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
| 426 |
+
),
|
| 427 |
+
],
|
| 428 |
+
p=argument_p,
|
| 429 |
+
),
|
| 430 |
+
transforms.RandomApply(
|
| 431 |
+
transforms=[
|
| 432 |
+
transforms.GaussianBlur(kernel_size=9, sigma=(0.1, 5)),
|
| 433 |
+
],
|
| 434 |
+
p=argument_p,
|
| 435 |
+
),
|
| 436 |
+
transforms.RandomApply(
|
| 437 |
+
transforms=[
|
| 438 |
+
RandomResize(size=224, resize_radio=(0.2, 1)),
|
| 439 |
+
],
|
| 440 |
+
p=argument_p,
|
| 441 |
+
),
|
| 442 |
+
transforms.Normalize(
|
| 443 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
| 444 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
| 445 |
+
),
|
| 446 |
+
]
|
| 447 |
+
)
|
| 448 |
+
else:
|
| 449 |
+
raise ValueError(f"invalid {transform_type=}")
|
| 450 |
+
|
| 451 |
+
if isinstance(versions, str):
|
| 452 |
+
versions = (versions,)
|
| 453 |
+
|
| 454 |
+
# 如果直接把clips定位为当前类的子module,1. 会在保存ckp时存无用的多个权重。 2. pl会调用to,导致layer_norm的权重也被转换成fp16
|
| 455 |
+
clips = OrderedDict()
|
| 456 |
+
|
| 457 |
+
for v in versions:
|
| 458 |
+
# 因为clips不是子module,直接指定device="cuda"会错误地导致clip模型权重都被放到cuda:0上。
|
| 459 |
+
clips[v], _ = clip.load(name=v, device="cpu", jit=False, download_root=None)
|
| 460 |
+
delattr(clips[v], "transformer")
|
| 461 |
+
clips[v].eval()
|
| 462 |
+
clips[v].requires_grad_(False)
|
| 463 |
+
|
| 464 |
+
self.clips_hidden_dim = sum(clips[v].ln_final.weight.size(0) for v in clips)
|
| 465 |
+
|
| 466 |
+
if self.num_projection_vector == 0:
|
| 467 |
+
self.projection = nn.Identity()
|
| 468 |
+
else:
|
| 469 |
+
self.projection = nn.Linear(self.clips_hidden_dim, hidden_state_dim * self.num_projection_vector, bias=True)
|
| 470 |
+
self.projection.to(dtype=self.dtype)
|
| 471 |
+
nn.init.normal_(self.projection.weight, std=self.clips_hidden_dim ** -0.5)
|
| 472 |
+
|
| 473 |
+
self.clips = clips
|
| 474 |
+
|
| 475 |
+
self._move_flag = False
|
| 476 |
+
|
| 477 |
+
def move(self):
|
| 478 |
+
if self._move_flag:
|
| 479 |
+
return
|
| 480 |
+
|
| 481 |
+
def convert_weights(model: nn.Module):
|
| 482 |
+
"""Convert applicable model parameters to fp16"""
|
| 483 |
+
|
| 484 |
+
def _convert_weights_to_fp16(l):
|
| 485 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
| 486 |
+
l.weight.data = l.weight.data.type(self.dtype)
|
| 487 |
+
if l.bias is not None:
|
| 488 |
+
l.bias.data = l.bias.data.type(self.dtype)
|
| 489 |
+
|
| 490 |
+
if isinstance(l, nn.MultiheadAttention):
|
| 491 |
+
for attr in [
|
| 492 |
+
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
|
| 493 |
+
"in_proj_bias",
|
| 494 |
+
"bias_k",
|
| 495 |
+
"bias_v",
|
| 496 |
+
]:
|
| 497 |
+
tensor = getattr(l, attr)
|
| 498 |
+
if tensor is not None:
|
| 499 |
+
tensor.data = tensor.data.type(self.dtype)
|
| 500 |
+
|
| 501 |
+
for name in ["text_projection", "proj"]:
|
| 502 |
+
if hasattr(l, name):
|
| 503 |
+
attr = getattr(l, name)
|
| 504 |
+
if attr is not None:
|
| 505 |
+
attr.data = attr.data.type(self.dtype)
|
| 506 |
+
|
| 507 |
+
model.apply(_convert_weights_to_fp16)
|
| 508 |
+
|
| 509 |
+
for k in self.clips:
|
| 510 |
+
self.clips[k].to(self.device)
|
| 511 |
+
convert_weights(self.clips[k]) # fp32 -> self.dtype
|
| 512 |
+
self._move_flag = True
|
| 513 |
+
|
| 514 |
+
def unconditional_embedding(self, batch_size=None):
|
| 515 |
+
zero = torch.zeros(
|
| 516 |
+
batch_size,
|
| 517 |
+
self.clips_hidden_dim,
|
| 518 |
+
device=self.device,
|
| 519 |
+
dtype=self.dtype,
|
| 520 |
+
)
|
| 521 |
+
if self.num_projection_vector > 0:
|
| 522 |
+
zero = self.projection(zero).view(batch_size, self.num_projection_vector, -1)
|
| 523 |
+
return zero
|
| 524 |
+
|
| 525 |
+
def convert_embedding(self, z):
|
| 526 |
+
if self.num_projection_vector > 0:
|
| 527 |
+
z = self.projection(z.type(self.projection.weight.dtype)).view(len(z), self.num_projection_vector, -1)
|
| 528 |
+
return z
|
| 529 |
+
|
| 530 |
+
def forward(self, image, value_range=(-1, 1), zero_embedding_radio=0):
|
| 531 |
+
if value_range is not None:
|
| 532 |
+
low, high = value_range
|
| 533 |
+
image = (image - low) / (high - low)
|
| 534 |
+
|
| 535 |
+
image = self.transform(image)
|
| 536 |
+
|
| 537 |
+
with torch.no_grad():
|
| 538 |
+
embs = []
|
| 539 |
+
for v in self.clips:
|
| 540 |
+
x = self.clips[v].encode_image(image)
|
| 541 |
+
if self.normalize:
|
| 542 |
+
x = x / x.norm(p=2, dim=-1, keepdim=True) * (x.size(-1) ** 0.5)
|
| 543 |
+
# clip_max only works with normalization
|
| 544 |
+
if self.clip_max > 0:
|
| 545 |
+
x = x.clamp(-self.clip_max, self.clip_max)
|
| 546 |
+
embs.append(x)
|
| 547 |
+
|
| 548 |
+
z = torch.cat(embs, dim=-1)
|
| 549 |
+
if self.normalize:
|
| 550 |
+
z /= z.size(-1) ** 0.5
|
| 551 |
+
|
| 552 |
+
if zero_embedding_radio > 0:
|
| 553 |
+
mask = torch.rand((len(image), 1, 1), device=z.device, dtype=z.dtype) >= zero_embedding_radio
|
| 554 |
+
z = z + mask.to(z)
|
| 555 |
+
|
| 556 |
+
if self.num_projection_vector > 0:
|
| 557 |
+
z = self.projection(z).view(len(image), self.num_projection_vector, -1)
|
| 558 |
+
return z
|
| 559 |
+
|
| 560 |
+
def encode(self, image):
|
| 561 |
+
self.move()
|
| 562 |
+
return self(image, zero_embedding_radio=self.zero_embedding_radio)
|
michelangelo/models/modules/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from .checkpoint import checkpoint
|
michelangelo/models/modules/checkpoint.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Adapted from: https://github.com/openai/guided-diffusion/blob/22e0df8183507e13a7813f8d38d51b072ca1e67c/guided_diffusion/nn.py#L124
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from typing import Callable, Iterable, Sequence, Union
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def checkpoint(
|
| 11 |
+
func: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor]]],
|
| 12 |
+
inputs: Sequence[torch.Tensor],
|
| 13 |
+
params: Iterable[torch.Tensor],
|
| 14 |
+
flag: bool,
|
| 15 |
+
use_deepspeed: bool = False
|
| 16 |
+
):
|
| 17 |
+
"""
|
| 18 |
+
Evaluate a function without caching intermediate activations, allowing for
|
| 19 |
+
reduced memory at the expense of extra compute in the backward pass.
|
| 20 |
+
:param func: the function to evaluate.
|
| 21 |
+
:param inputs: the argument sequence to pass to `func`.
|
| 22 |
+
:param params: a sequence of parameters `func` depends on but does not
|
| 23 |
+
explicitly take as arguments.
|
| 24 |
+
:param flag: if False, disable gradient checkpointing.
|
| 25 |
+
:param use_deepspeed: if True, use deepspeed
|
| 26 |
+
"""
|
| 27 |
+
if flag:
|
| 28 |
+
if use_deepspeed:
|
| 29 |
+
import deepspeed
|
| 30 |
+
return deepspeed.checkpointing.checkpoint(func, *inputs)
|
| 31 |
+
|
| 32 |
+
args = tuple(inputs) + tuple(params)
|
| 33 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
| 34 |
+
else:
|
| 35 |
+
return func(*inputs)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class CheckpointFunction(torch.autograd.Function):
|
| 39 |
+
@staticmethod
|
| 40 |
+
@torch.cuda.amp.custom_fwd
|
| 41 |
+
def forward(ctx, run_function, length, *args):
|
| 42 |
+
ctx.run_function = run_function
|
| 43 |
+
ctx.input_tensors = list(args[:length])
|
| 44 |
+
ctx.input_params = list(args[length:])
|
| 45 |
+
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
| 48 |
+
return output_tensors
|
| 49 |
+
|
| 50 |
+
@staticmethod
|
| 51 |
+
@torch.cuda.amp.custom_bwd
|
| 52 |
+
def backward(ctx, *output_grads):
|
| 53 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
| 54 |
+
with torch.enable_grad():
|
| 55 |
+
# Fixes a bug where the first op in run_function modifies the
|
| 56 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
| 57 |
+
# Tensors.
|
| 58 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
| 59 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
| 60 |
+
input_grads = torch.autograd.grad(
|
| 61 |
+
output_tensors,
|
| 62 |
+
ctx.input_tensors + ctx.input_params,
|
| 63 |
+
output_grads,
|
| 64 |
+
allow_unused=True,
|
| 65 |
+
)
|
| 66 |
+
del ctx.input_tensors
|
| 67 |
+
del ctx.input_params
|
| 68 |
+
del output_tensors
|
| 69 |
+
return (None, None) + input_grads
|
michelangelo/models/modules/diffusion_transformer.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from typing import Optional
|
| 7 |
+
|
| 8 |
+
from michelangelo.models.modules.checkpoint import checkpoint
|
| 9 |
+
from michelangelo.models.modules.transformer_blocks import (
|
| 10 |
+
init_linear,
|
| 11 |
+
MLP,
|
| 12 |
+
MultiheadCrossAttention,
|
| 13 |
+
MultiheadAttention,
|
| 14 |
+
ResidualAttentionBlock
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class AdaLayerNorm(nn.Module):
|
| 19 |
+
def __init__(self,
|
| 20 |
+
device: torch.device,
|
| 21 |
+
dtype: torch.dtype,
|
| 22 |
+
width: int):
|
| 23 |
+
|
| 24 |
+
super().__init__()
|
| 25 |
+
|
| 26 |
+
self.silu = nn.SiLU(inplace=True)
|
| 27 |
+
self.linear = nn.Linear(width, width * 2, device=device, dtype=dtype)
|
| 28 |
+
self.layernorm = nn.LayerNorm(width, elementwise_affine=False, device=device, dtype=dtype)
|
| 29 |
+
|
| 30 |
+
def forward(self, x, timestep):
|
| 31 |
+
emb = self.linear(timestep)
|
| 32 |
+
scale, shift = torch.chunk(emb, 2, dim=2)
|
| 33 |
+
x = self.layernorm(x) * (1 + scale) + shift
|
| 34 |
+
return x
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class DitBlock(nn.Module):
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
*,
|
| 41 |
+
device: torch.device,
|
| 42 |
+
dtype: torch.dtype,
|
| 43 |
+
n_ctx: int,
|
| 44 |
+
width: int,
|
| 45 |
+
heads: int,
|
| 46 |
+
context_dim: int,
|
| 47 |
+
qkv_bias: bool = False,
|
| 48 |
+
init_scale: float = 1.0,
|
| 49 |
+
use_checkpoint: bool = False
|
| 50 |
+
):
|
| 51 |
+
super().__init__()
|
| 52 |
+
|
| 53 |
+
self.use_checkpoint = use_checkpoint
|
| 54 |
+
|
| 55 |
+
self.attn = MultiheadAttention(
|
| 56 |
+
device=device,
|
| 57 |
+
dtype=dtype,
|
| 58 |
+
n_ctx=n_ctx,
|
| 59 |
+
width=width,
|
| 60 |
+
heads=heads,
|
| 61 |
+
init_scale=init_scale,
|
| 62 |
+
qkv_bias=qkv_bias
|
| 63 |
+
)
|
| 64 |
+
self.ln_1 = AdaLayerNorm(device, dtype, width)
|
| 65 |
+
|
| 66 |
+
if context_dim is not None:
|
| 67 |
+
self.ln_2 = AdaLayerNorm(device, dtype, width)
|
| 68 |
+
self.cross_attn = MultiheadCrossAttention(
|
| 69 |
+
device=device,
|
| 70 |
+
dtype=dtype,
|
| 71 |
+
width=width,
|
| 72 |
+
heads=heads,
|
| 73 |
+
data_width=context_dim,
|
| 74 |
+
init_scale=init_scale,
|
| 75 |
+
qkv_bias=qkv_bias
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
| 79 |
+
self.ln_3 = AdaLayerNorm(device, dtype, width)
|
| 80 |
+
|
| 81 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
| 82 |
+
return checkpoint(self._forward, (x, t, context), self.parameters(), self.use_checkpoint)
|
| 83 |
+
|
| 84 |
+
def _forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
| 85 |
+
x = x + self.attn(self.ln_1(x, t))
|
| 86 |
+
if context is not None:
|
| 87 |
+
x = x + self.cross_attn(self.ln_2(x, t), context)
|
| 88 |
+
x = x + self.mlp(self.ln_3(x, t))
|
| 89 |
+
return x
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class DiT(nn.Module):
|
| 93 |
+
def __init__(
|
| 94 |
+
self,
|
| 95 |
+
*,
|
| 96 |
+
device: Optional[torch.device],
|
| 97 |
+
dtype: Optional[torch.dtype],
|
| 98 |
+
n_ctx: int,
|
| 99 |
+
width: int,
|
| 100 |
+
layers: int,
|
| 101 |
+
heads: int,
|
| 102 |
+
context_dim: int,
|
| 103 |
+
init_scale: float = 0.25,
|
| 104 |
+
qkv_bias: bool = False,
|
| 105 |
+
use_checkpoint: bool = False
|
| 106 |
+
):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self.n_ctx = n_ctx
|
| 109 |
+
self.width = width
|
| 110 |
+
self.layers = layers
|
| 111 |
+
|
| 112 |
+
self.resblocks = nn.ModuleList(
|
| 113 |
+
[
|
| 114 |
+
DitBlock(
|
| 115 |
+
device=device,
|
| 116 |
+
dtype=dtype,
|
| 117 |
+
n_ctx=n_ctx,
|
| 118 |
+
width=width,
|
| 119 |
+
heads=heads,
|
| 120 |
+
context_dim=context_dim,
|
| 121 |
+
qkv_bias=qkv_bias,
|
| 122 |
+
init_scale=init_scale,
|
| 123 |
+
use_checkpoint=use_checkpoint
|
| 124 |
+
)
|
| 125 |
+
for _ in range(layers)
|
| 126 |
+
]
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
| 130 |
+
for block in self.resblocks:
|
| 131 |
+
x = block(x, t, context)
|
| 132 |
+
return x
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class UNetDiffusionTransformer(nn.Module):
|
| 136 |
+
def __init__(
|
| 137 |
+
self,
|
| 138 |
+
*,
|
| 139 |
+
device: Optional[torch.device],
|
| 140 |
+
dtype: Optional[torch.dtype],
|
| 141 |
+
n_ctx: int,
|
| 142 |
+
width: int,
|
| 143 |
+
layers: int,
|
| 144 |
+
heads: int,
|
| 145 |
+
init_scale: float = 0.25,
|
| 146 |
+
qkv_bias: bool = False,
|
| 147 |
+
skip_ln: bool = False,
|
| 148 |
+
use_checkpoint: bool = False
|
| 149 |
+
):
|
| 150 |
+
super().__init__()
|
| 151 |
+
|
| 152 |
+
self.n_ctx = n_ctx
|
| 153 |
+
self.width = width
|
| 154 |
+
self.layers = layers
|
| 155 |
+
|
| 156 |
+
self.encoder = nn.ModuleList()
|
| 157 |
+
for _ in range(layers):
|
| 158 |
+
resblock = ResidualAttentionBlock(
|
| 159 |
+
device=device,
|
| 160 |
+
dtype=dtype,
|
| 161 |
+
n_ctx=n_ctx,
|
| 162 |
+
width=width,
|
| 163 |
+
heads=heads,
|
| 164 |
+
init_scale=init_scale,
|
| 165 |
+
qkv_bias=qkv_bias,
|
| 166 |
+
use_checkpoint=use_checkpoint
|
| 167 |
+
)
|
| 168 |
+
self.encoder.append(resblock)
|
| 169 |
+
|
| 170 |
+
self.middle_block = ResidualAttentionBlock(
|
| 171 |
+
device=device,
|
| 172 |
+
dtype=dtype,
|
| 173 |
+
n_ctx=n_ctx,
|
| 174 |
+
width=width,
|
| 175 |
+
heads=heads,
|
| 176 |
+
init_scale=init_scale,
|
| 177 |
+
qkv_bias=qkv_bias,
|
| 178 |
+
use_checkpoint=use_checkpoint
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
self.decoder = nn.ModuleList()
|
| 182 |
+
for _ in range(layers):
|
| 183 |
+
resblock = ResidualAttentionBlock(
|
| 184 |
+
device=device,
|
| 185 |
+
dtype=dtype,
|
| 186 |
+
n_ctx=n_ctx,
|
| 187 |
+
width=width,
|
| 188 |
+
heads=heads,
|
| 189 |
+
init_scale=init_scale,
|
| 190 |
+
qkv_bias=qkv_bias,
|
| 191 |
+
use_checkpoint=use_checkpoint
|
| 192 |
+
)
|
| 193 |
+
linear = nn.Linear(width * 2, width, device=device, dtype=dtype)
|
| 194 |
+
init_linear(linear, init_scale)
|
| 195 |
+
|
| 196 |
+
layer_norm = nn.LayerNorm(width, device=device, dtype=dtype) if skip_ln else None
|
| 197 |
+
|
| 198 |
+
self.decoder.append(nn.ModuleList([resblock, linear, layer_norm]))
|
| 199 |
+
|
| 200 |
+
def forward(self, x: torch.Tensor):
|
| 201 |
+
|
| 202 |
+
enc_outputs = []
|
| 203 |
+
for block in self.encoder:
|
| 204 |
+
x = block(x)
|
| 205 |
+
enc_outputs.append(x)
|
| 206 |
+
|
| 207 |
+
x = self.middle_block(x)
|
| 208 |
+
|
| 209 |
+
for i, (resblock, linear, layer_norm) in enumerate(self.decoder):
|
| 210 |
+
x = torch.cat([enc_outputs.pop(), x], dim=-1)
|
| 211 |
+
x = linear(x)
|
| 212 |
+
|
| 213 |
+
if layer_norm is not None:
|
| 214 |
+
x = layer_norm(x)
|
| 215 |
+
|
| 216 |
+
x = resblock(x)
|
| 217 |
+
|
| 218 |
+
return x
|
michelangelo/models/modules/distributions.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from typing import Union, List
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class AbstractDistribution(object):
|
| 7 |
+
def sample(self):
|
| 8 |
+
raise NotImplementedError()
|
| 9 |
+
|
| 10 |
+
def mode(self):
|
| 11 |
+
raise NotImplementedError()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class DiracDistribution(AbstractDistribution):
|
| 15 |
+
def __init__(self, value):
|
| 16 |
+
self.value = value
|
| 17 |
+
|
| 18 |
+
def sample(self):
|
| 19 |
+
return self.value
|
| 20 |
+
|
| 21 |
+
def mode(self):
|
| 22 |
+
return self.value
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class DiagonalGaussianDistribution(object):
|
| 26 |
+
def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
|
| 27 |
+
self.feat_dim = feat_dim
|
| 28 |
+
self.parameters = parameters
|
| 29 |
+
|
| 30 |
+
if isinstance(parameters, list):
|
| 31 |
+
self.mean = parameters[0]
|
| 32 |
+
self.logvar = parameters[1]
|
| 33 |
+
else:
|
| 34 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
|
| 35 |
+
|
| 36 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
| 37 |
+
self.deterministic = deterministic
|
| 38 |
+
self.std = torch.exp(0.5 * self.logvar)
|
| 39 |
+
self.var = torch.exp(self.logvar)
|
| 40 |
+
if self.deterministic:
|
| 41 |
+
self.var = self.std = torch.zeros_like(self.mean)
|
| 42 |
+
|
| 43 |
+
def sample(self):
|
| 44 |
+
x = self.mean + self.std * torch.randn_like(self.mean)
|
| 45 |
+
return x
|
| 46 |
+
|
| 47 |
+
def kl(self, other=None, dims=(1, 2, 3)):
|
| 48 |
+
if self.deterministic:
|
| 49 |
+
return torch.Tensor([0.])
|
| 50 |
+
else:
|
| 51 |
+
if other is None:
|
| 52 |
+
return 0.5 * torch.mean(torch.pow(self.mean, 2)
|
| 53 |
+
+ self.var - 1.0 - self.logvar,
|
| 54 |
+
dim=dims)
|
| 55 |
+
else:
|
| 56 |
+
return 0.5 * torch.mean(
|
| 57 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
| 58 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
| 59 |
+
dim=dims)
|
| 60 |
+
|
| 61 |
+
def nll(self, sample, dims=(1, 2, 3)):
|
| 62 |
+
if self.deterministic:
|
| 63 |
+
return torch.Tensor([0.])
|
| 64 |
+
logtwopi = np.log(2.0 * np.pi)
|
| 65 |
+
return 0.5 * torch.sum(
|
| 66 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
| 67 |
+
dim=dims)
|
| 68 |
+
|
| 69 |
+
def mode(self):
|
| 70 |
+
return self.mean
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
| 74 |
+
"""
|
| 75 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
| 76 |
+
Compute the KL divergence between two gaussians.
|
| 77 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
| 78 |
+
scalars, among other use cases.
|
| 79 |
+
"""
|
| 80 |
+
tensor = None
|
| 81 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
| 82 |
+
if isinstance(obj, torch.Tensor):
|
| 83 |
+
tensor = obj
|
| 84 |
+
break
|
| 85 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
| 86 |
+
|
| 87 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
| 88 |
+
# Tensors, but it does not work for torch.exp().
|
| 89 |
+
logvar1, logvar2 = [
|
| 90 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
| 91 |
+
for x in (logvar1, logvar2)
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
return 0.5 * (
|
| 95 |
+
-1.0
|
| 96 |
+
+ logvar2
|
| 97 |
+
- logvar1
|
| 98 |
+
+ torch.exp(logvar1 - logvar2)
|
| 99 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
| 100 |
+
)
|
michelangelo/models/modules/embedder.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import math
|
| 7 |
+
|
| 8 |
+
VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"]
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class FourierEmbedder(nn.Module):
|
| 12 |
+
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
|
| 13 |
+
each feature dimension of `x[..., i]` into:
|
| 14 |
+
[
|
| 15 |
+
sin(x[..., i]),
|
| 16 |
+
sin(f_1*x[..., i]),
|
| 17 |
+
sin(f_2*x[..., i]),
|
| 18 |
+
...
|
| 19 |
+
sin(f_N * x[..., i]),
|
| 20 |
+
cos(x[..., i]),
|
| 21 |
+
cos(f_1*x[..., i]),
|
| 22 |
+
cos(f_2*x[..., i]),
|
| 23 |
+
...
|
| 24 |
+
cos(f_N * x[..., i]),
|
| 25 |
+
x[..., i] # only present if include_input is True.
|
| 26 |
+
], here f_i is the frequency.
|
| 27 |
+
|
| 28 |
+
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
|
| 29 |
+
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
|
| 30 |
+
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
num_freqs (int): the number of frequencies, default is 6;
|
| 34 |
+
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
|
| 35 |
+
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
|
| 36 |
+
input_dim (int): the input dimension, default is 3;
|
| 37 |
+
include_input (bool): include the input tensor or not, default is True.
|
| 38 |
+
|
| 39 |
+
Attributes:
|
| 40 |
+
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
|
| 41 |
+
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);
|
| 42 |
+
|
| 43 |
+
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
|
| 44 |
+
otherwise, it is input_dim * num_freqs * 2.
|
| 45 |
+
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
def __init__(self,
|
| 49 |
+
num_freqs: int = 6,
|
| 50 |
+
logspace: bool = True,
|
| 51 |
+
input_dim: int = 3,
|
| 52 |
+
include_input: bool = True,
|
| 53 |
+
include_pi: bool = True) -> None:
|
| 54 |
+
|
| 55 |
+
"""The initialization"""
|
| 56 |
+
|
| 57 |
+
super().__init__()
|
| 58 |
+
|
| 59 |
+
if logspace:
|
| 60 |
+
frequencies = 2.0 ** torch.arange(
|
| 61 |
+
num_freqs,
|
| 62 |
+
dtype=torch.float32
|
| 63 |
+
)
|
| 64 |
+
else:
|
| 65 |
+
frequencies = torch.linspace(
|
| 66 |
+
1.0,
|
| 67 |
+
2.0 ** (num_freqs - 1),
|
| 68 |
+
num_freqs,
|
| 69 |
+
dtype=torch.float32
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
if include_pi:
|
| 73 |
+
frequencies *= torch.pi
|
| 74 |
+
|
| 75 |
+
self.register_buffer("frequencies", frequencies, persistent=False)
|
| 76 |
+
self.include_input = include_input
|
| 77 |
+
self.num_freqs = num_freqs
|
| 78 |
+
|
| 79 |
+
self.out_dim = self.get_dims(input_dim)
|
| 80 |
+
|
| 81 |
+
def get_dims(self, input_dim):
|
| 82 |
+
temp = 1 if self.include_input or self.num_freqs == 0 else 0
|
| 83 |
+
out_dim = input_dim * (self.num_freqs * 2 + temp)
|
| 84 |
+
|
| 85 |
+
return out_dim
|
| 86 |
+
|
| 87 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 88 |
+
""" Forward process.
|
| 89 |
+
|
| 90 |
+
Args:
|
| 91 |
+
x: tensor of shape [..., dim]
|
| 92 |
+
|
| 93 |
+
Returns:
|
| 94 |
+
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
|
| 95 |
+
where temp is 1 if include_input is True and 0 otherwise.
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
if self.num_freqs > 0:
|
| 99 |
+
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
|
| 100 |
+
if self.include_input:
|
| 101 |
+
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
|
| 102 |
+
else:
|
| 103 |
+
return torch.cat((embed.sin(), embed.cos()), dim=-1)
|
| 104 |
+
else:
|
| 105 |
+
return x
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class LearnedFourierEmbedder(nn.Module):
|
| 109 |
+
""" following @crowsonkb "s lead with learned sinusoidal pos emb """
|
| 110 |
+
""" https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """
|
| 111 |
+
|
| 112 |
+
def __init__(self, in_channels, dim):
|
| 113 |
+
super().__init__()
|
| 114 |
+
assert (dim % 2) == 0
|
| 115 |
+
half_dim = dim // 2
|
| 116 |
+
per_channel_dim = half_dim // in_channels
|
| 117 |
+
self.weights = nn.Parameter(torch.randn(per_channel_dim))
|
| 118 |
+
|
| 119 |
+
def forward(self, x):
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
x (torch.FloatTensor): [..., c]
|
| 124 |
+
|
| 125 |
+
Returns:
|
| 126 |
+
x (torch.FloatTensor): [..., d]
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
# [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
|
| 130 |
+
freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
|
| 131 |
+
fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
|
| 132 |
+
return fouriered
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class TriplaneLearnedFourierEmbedder(nn.Module):
|
| 136 |
+
def __init__(self, in_channels, dim):
|
| 137 |
+
super().__init__()
|
| 138 |
+
|
| 139 |
+
self.yz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
| 140 |
+
self.xz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
| 141 |
+
self.xy_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
| 142 |
+
|
| 143 |
+
self.out_dim = in_channels + dim
|
| 144 |
+
|
| 145 |
+
def forward(self, x):
|
| 146 |
+
|
| 147 |
+
yz_embed = self.yz_plane_embedder(x)
|
| 148 |
+
xz_embed = self.xz_plane_embedder(x)
|
| 149 |
+
xy_embed = self.xy_plane_embedder(x)
|
| 150 |
+
|
| 151 |
+
embed = yz_embed + xz_embed + xy_embed
|
| 152 |
+
|
| 153 |
+
return embed
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def sequential_pos_embed(num_len, embed_dim):
|
| 157 |
+
assert embed_dim % 2 == 0
|
| 158 |
+
|
| 159 |
+
pos = torch.arange(num_len, dtype=torch.float32)
|
| 160 |
+
omega = torch.arange(embed_dim // 2, dtype=torch.float32)
|
| 161 |
+
omega /= embed_dim / 2.
|
| 162 |
+
omega = 1. / 10000 ** omega # (D/2,)
|
| 163 |
+
|
| 164 |
+
pos = pos.reshape(-1) # (M,)
|
| 165 |
+
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
| 166 |
+
|
| 167 |
+
emb_sin = torch.sin(out) # (M, D/2)
|
| 168 |
+
emb_cos = torch.cos(out) # (M, D/2)
|
| 169 |
+
|
| 170 |
+
embeddings = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
|
| 171 |
+
|
| 172 |
+
return embeddings
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
| 176 |
+
"""
|
| 177 |
+
Create sinusoidal timestep embeddings.
|
| 178 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 179 |
+
These may be fractional.
|
| 180 |
+
:param dim: the dimension of the output.
|
| 181 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 182 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
| 183 |
+
"""
|
| 184 |
+
half = dim // 2
|
| 185 |
+
freqs = torch.exp(
|
| 186 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 187 |
+
).to(device=timesteps.device)
|
| 188 |
+
args = timesteps[:, None].to(timesteps.dtype) * freqs[None]
|
| 189 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 190 |
+
if dim % 2:
|
| 191 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 192 |
+
return embedding
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, degree=4,
|
| 196 |
+
num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16,
|
| 197 |
+
log2_hashmap_size=19, desired_resolution=None):
|
| 198 |
+
if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
|
| 199 |
+
return nn.Identity(), input_dim
|
| 200 |
+
|
| 201 |
+
elif embed_type == "fourier":
|
| 202 |
+
embedder_obj = FourierEmbedder(num_freqs=num_freqs, input_dim=input_dim,
|
| 203 |
+
logspace=True, include_input=True)
|
| 204 |
+
return embedder_obj, embedder_obj.out_dim
|
| 205 |
+
|
| 206 |
+
elif embed_type == "hashgrid":
|
| 207 |
+
raise NotImplementedError
|
| 208 |
+
|
| 209 |
+
elif embed_type == "sphere_harmonic":
|
| 210 |
+
raise NotImplementedError
|
| 211 |
+
|
| 212 |
+
else:
|
| 213 |
+
raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")
|
michelangelo/models/modules/transformer_blocks.py
ADDED
|
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from typing import Optional
|
| 8 |
+
|
| 9 |
+
from michelangelo.models.modules.checkpoint import checkpoint
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def init_linear(l, stddev):
|
| 13 |
+
nn.init.normal_(l.weight, std=stddev)
|
| 14 |
+
if l.bias is not None:
|
| 15 |
+
nn.init.constant_(l.bias, 0.0)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class MultiheadAttention(nn.Module):
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
*,
|
| 22 |
+
device: torch.device,
|
| 23 |
+
dtype: torch.dtype,
|
| 24 |
+
n_ctx: int,
|
| 25 |
+
width: int,
|
| 26 |
+
heads: int,
|
| 27 |
+
init_scale: float,
|
| 28 |
+
qkv_bias: bool,
|
| 29 |
+
flash: bool = False
|
| 30 |
+
):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.n_ctx = n_ctx
|
| 33 |
+
self.width = width
|
| 34 |
+
self.heads = heads
|
| 35 |
+
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
|
| 36 |
+
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
| 37 |
+
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx, flash=flash)
|
| 38 |
+
init_linear(self.c_qkv, init_scale)
|
| 39 |
+
init_linear(self.c_proj, init_scale)
|
| 40 |
+
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
x = self.c_qkv(x)
|
| 43 |
+
x = checkpoint(self.attention, (x,), (), True)
|
| 44 |
+
x = self.c_proj(x)
|
| 45 |
+
return x
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class QKVMultiheadAttention(nn.Module):
|
| 49 |
+
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int, flash: bool = False):
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.device = device
|
| 52 |
+
self.dtype = dtype
|
| 53 |
+
self.heads = heads
|
| 54 |
+
self.n_ctx = n_ctx
|
| 55 |
+
self.flash = flash
|
| 56 |
+
|
| 57 |
+
def forward(self, qkv):
|
| 58 |
+
bs, n_ctx, width = qkv.shape
|
| 59 |
+
attn_ch = width // self.heads // 3
|
| 60 |
+
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
| 61 |
+
qkv = qkv.view(bs, n_ctx, self.heads, -1)
|
| 62 |
+
q, k, v = torch.split(qkv, attn_ch, dim=-1)
|
| 63 |
+
|
| 64 |
+
if self.flash:
|
| 65 |
+
out = F.scaled_dot_product_attention(q, k, v)
|
| 66 |
+
else:
|
| 67 |
+
weight = torch.einsum(
|
| 68 |
+
"bthc,bshc->bhts", q * scale, k * scale
|
| 69 |
+
) # More stable with f16 than dividing afterwards
|
| 70 |
+
wdtype = weight.dtype
|
| 71 |
+
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
| 72 |
+
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
| 73 |
+
|
| 74 |
+
return out
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class ResidualAttentionBlock(nn.Module):
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
*,
|
| 81 |
+
device: torch.device,
|
| 82 |
+
dtype: torch.dtype,
|
| 83 |
+
n_ctx: int,
|
| 84 |
+
width: int,
|
| 85 |
+
heads: int,
|
| 86 |
+
init_scale: float = 1.0,
|
| 87 |
+
qkv_bias: bool = True,
|
| 88 |
+
flash: bool = False,
|
| 89 |
+
use_checkpoint: bool = False
|
| 90 |
+
):
|
| 91 |
+
super().__init__()
|
| 92 |
+
|
| 93 |
+
self.use_checkpoint = use_checkpoint
|
| 94 |
+
|
| 95 |
+
self.attn = MultiheadAttention(
|
| 96 |
+
device=device,
|
| 97 |
+
dtype=dtype,
|
| 98 |
+
n_ctx=n_ctx,
|
| 99 |
+
width=width,
|
| 100 |
+
heads=heads,
|
| 101 |
+
init_scale=init_scale,
|
| 102 |
+
qkv_bias=qkv_bias,
|
| 103 |
+
flash=flash
|
| 104 |
+
)
|
| 105 |
+
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
| 106 |
+
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
| 107 |
+
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
|
| 108 |
+
|
| 109 |
+
def _forward(self, x: torch.Tensor):
|
| 110 |
+
x = x + self.attn(self.ln_1(x))
|
| 111 |
+
x = x + self.mlp(self.ln_2(x))
|
| 112 |
+
return x
|
| 113 |
+
|
| 114 |
+
def forward(self, x: torch.Tensor):
|
| 115 |
+
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class MultiheadCrossAttention(nn.Module):
|
| 119 |
+
def __init__(
|
| 120 |
+
self,
|
| 121 |
+
*,
|
| 122 |
+
device: torch.device,
|
| 123 |
+
dtype: torch.dtype,
|
| 124 |
+
width: int,
|
| 125 |
+
heads: int,
|
| 126 |
+
init_scale: float,
|
| 127 |
+
qkv_bias: bool = True,
|
| 128 |
+
flash: bool = False,
|
| 129 |
+
n_data: Optional[int] = None,
|
| 130 |
+
data_width: Optional[int] = None,
|
| 131 |
+
):
|
| 132 |
+
super().__init__()
|
| 133 |
+
self.n_data = n_data
|
| 134 |
+
self.width = width
|
| 135 |
+
self.heads = heads
|
| 136 |
+
self.data_width = width if data_width is None else data_width
|
| 137 |
+
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
|
| 138 |
+
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
|
| 139 |
+
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
| 140 |
+
self.attention = QKVMultiheadCrossAttention(
|
| 141 |
+
device=device, dtype=dtype, heads=heads, n_data=n_data, flash=flash
|
| 142 |
+
)
|
| 143 |
+
init_linear(self.c_q, init_scale)
|
| 144 |
+
init_linear(self.c_kv, init_scale)
|
| 145 |
+
init_linear(self.c_proj, init_scale)
|
| 146 |
+
|
| 147 |
+
def forward(self, x, data):
|
| 148 |
+
x = self.c_q(x)
|
| 149 |
+
data = self.c_kv(data)
|
| 150 |
+
x = checkpoint(self.attention, (x, data), (), True)
|
| 151 |
+
x = self.c_proj(x)
|
| 152 |
+
return x
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
class QKVMultiheadCrossAttention(nn.Module):
|
| 156 |
+
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int,
|
| 157 |
+
flash: bool = False, n_data: Optional[int] = None):
|
| 158 |
+
|
| 159 |
+
super().__init__()
|
| 160 |
+
self.device = device
|
| 161 |
+
self.dtype = dtype
|
| 162 |
+
self.heads = heads
|
| 163 |
+
self.n_data = n_data
|
| 164 |
+
self.flash = flash
|
| 165 |
+
|
| 166 |
+
def forward(self, q, kv):
|
| 167 |
+
_, n_ctx, _ = q.shape
|
| 168 |
+
bs, n_data, width = kv.shape
|
| 169 |
+
attn_ch = width // self.heads // 2
|
| 170 |
+
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
| 171 |
+
q = q.view(bs, n_ctx, self.heads, -1)
|
| 172 |
+
kv = kv.view(bs, n_data, self.heads, -1)
|
| 173 |
+
k, v = torch.split(kv, attn_ch, dim=-1)
|
| 174 |
+
|
| 175 |
+
if self.flash:
|
| 176 |
+
out = F.scaled_dot_product_attention(q, k, v)
|
| 177 |
+
else:
|
| 178 |
+
weight = torch.einsum(
|
| 179 |
+
"bthc,bshc->bhts", q * scale, k * scale
|
| 180 |
+
) # More stable with f16 than dividing afterwards
|
| 181 |
+
wdtype = weight.dtype
|
| 182 |
+
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
| 183 |
+
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
| 184 |
+
|
| 185 |
+
return out
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class ResidualCrossAttentionBlock(nn.Module):
|
| 189 |
+
def __init__(
|
| 190 |
+
self,
|
| 191 |
+
*,
|
| 192 |
+
device: Optional[torch.device],
|
| 193 |
+
dtype: Optional[torch.dtype],
|
| 194 |
+
n_data: Optional[int] = None,
|
| 195 |
+
width: int,
|
| 196 |
+
heads: int,
|
| 197 |
+
data_width: Optional[int] = None,
|
| 198 |
+
init_scale: float = 0.25,
|
| 199 |
+
qkv_bias: bool = True,
|
| 200 |
+
flash: bool = False
|
| 201 |
+
):
|
| 202 |
+
super().__init__()
|
| 203 |
+
|
| 204 |
+
if data_width is None:
|
| 205 |
+
data_width = width
|
| 206 |
+
|
| 207 |
+
self.attn = MultiheadCrossAttention(
|
| 208 |
+
device=device,
|
| 209 |
+
dtype=dtype,
|
| 210 |
+
n_data=n_data,
|
| 211 |
+
width=width,
|
| 212 |
+
heads=heads,
|
| 213 |
+
data_width=data_width,
|
| 214 |
+
init_scale=init_scale,
|
| 215 |
+
qkv_bias=qkv_bias,
|
| 216 |
+
flash=flash,
|
| 217 |
+
)
|
| 218 |
+
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
| 219 |
+
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
|
| 220 |
+
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
| 221 |
+
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
|
| 222 |
+
|
| 223 |
+
def forward(self, x: torch.Tensor, data: torch.Tensor):
|
| 224 |
+
x = x + self.attn(self.ln_1(x), self.ln_2(data))
|
| 225 |
+
x = x + self.mlp(self.ln_3(x))
|
| 226 |
+
return x
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class MLP(nn.Module):
|
| 230 |
+
def __init__(self, *,
|
| 231 |
+
device: Optional[torch.device],
|
| 232 |
+
dtype: Optional[torch.dtype],
|
| 233 |
+
width: int,
|
| 234 |
+
init_scale: float):
|
| 235 |
+
super().__init__()
|
| 236 |
+
self.width = width
|
| 237 |
+
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
|
| 238 |
+
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
|
| 239 |
+
self.gelu = nn.GELU()
|
| 240 |
+
init_linear(self.c_fc, init_scale)
|
| 241 |
+
init_linear(self.c_proj, init_scale)
|
| 242 |
+
|
| 243 |
+
def forward(self, x):
|
| 244 |
+
return self.c_proj(self.gelu(self.c_fc(x)))
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class Transformer(nn.Module):
|
| 248 |
+
def __init__(
|
| 249 |
+
self,
|
| 250 |
+
*,
|
| 251 |
+
device: Optional[torch.device],
|
| 252 |
+
dtype: Optional[torch.dtype],
|
| 253 |
+
n_ctx: int,
|
| 254 |
+
width: int,
|
| 255 |
+
layers: int,
|
| 256 |
+
heads: int,
|
| 257 |
+
init_scale: float = 0.25,
|
| 258 |
+
qkv_bias: bool = True,
|
| 259 |
+
flash: bool = False,
|
| 260 |
+
use_checkpoint: bool = False
|
| 261 |
+
):
|
| 262 |
+
super().__init__()
|
| 263 |
+
self.n_ctx = n_ctx
|
| 264 |
+
self.width = width
|
| 265 |
+
self.layers = layers
|
| 266 |
+
self.resblocks = nn.ModuleList(
|
| 267 |
+
[
|
| 268 |
+
ResidualAttentionBlock(
|
| 269 |
+
device=device,
|
| 270 |
+
dtype=dtype,
|
| 271 |
+
n_ctx=n_ctx,
|
| 272 |
+
width=width,
|
| 273 |
+
heads=heads,
|
| 274 |
+
init_scale=init_scale,
|
| 275 |
+
qkv_bias=qkv_bias,
|
| 276 |
+
flash=flash,
|
| 277 |
+
use_checkpoint=use_checkpoint
|
| 278 |
+
)
|
| 279 |
+
for _ in range(layers)
|
| 280 |
+
]
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
def forward(self, x: torch.Tensor):
|
| 284 |
+
for block in self.resblocks:
|
| 285 |
+
x = block(x)
|
| 286 |
+
return x
|
michelangelo/models/modules/transformer_vit.py
ADDED
|
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from typing import Optional
|
| 7 |
+
import warnings
|
| 8 |
+
|
| 9 |
+
from michelangelo.models.modules.checkpoint import checkpoint
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
| 13 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 14 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 15 |
+
def norm_cdf(x):
|
| 16 |
+
# Computes standard normal cumulative distribution function
|
| 17 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 18 |
+
|
| 19 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 20 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 21 |
+
"The distribution of values may be incorrect.",
|
| 22 |
+
stacklevel=2)
|
| 23 |
+
|
| 24 |
+
# Values are generated by using a truncated uniform distribution and
|
| 25 |
+
# then using the inverse CDF for the normal distribution.
|
| 26 |
+
# Get upper and lower cdf values
|
| 27 |
+
l = norm_cdf((a - mean) / std)
|
| 28 |
+
u = norm_cdf((b - mean) / std)
|
| 29 |
+
|
| 30 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 31 |
+
# [2l-1, 2u-1].
|
| 32 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 33 |
+
|
| 34 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 35 |
+
# standard normal
|
| 36 |
+
tensor.erfinv_()
|
| 37 |
+
|
| 38 |
+
# Transform to proper mean, std
|
| 39 |
+
tensor.mul_(std * math.sqrt(2.))
|
| 40 |
+
tensor.add_(mean)
|
| 41 |
+
|
| 42 |
+
# Clamp to ensure it's in the proper range
|
| 43 |
+
tensor.clamp_(min=a, max=b)
|
| 44 |
+
return tensor
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
| 48 |
+
# type: (Tensor | nn.Parameter, float, float, float, float) -> Tensor
|
| 49 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
| 50 |
+
normal distribution. The values are effectively drawn from the
|
| 51 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 52 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 53 |
+
the bounds. The method used for generating the random values works
|
| 54 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
| 55 |
+
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
|
| 56 |
+
applied while sampling the normal with mean/std applied, therefore a, b args
|
| 57 |
+
should be adjusted to match the range of mean, std args.
|
| 58 |
+
Args:
|
| 59 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 60 |
+
mean: the mean of the normal distribution
|
| 61 |
+
std: the standard deviation of the normal distribution
|
| 62 |
+
a: the minimum cutoff value
|
| 63 |
+
b: the maximum cutoff value
|
| 64 |
+
Examples:
|
| 65 |
+
>>> w = torch.empty(3, 5)
|
| 66 |
+
>>> nn.init.trunc_normal_(w)
|
| 67 |
+
"""
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
return _trunc_normal_(tensor, mean, std, a, b)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def init_weights(m):
|
| 73 |
+
if isinstance(m, nn.Linear):
|
| 74 |
+
trunc_normal_(m.weight, std=.02)
|
| 75 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 76 |
+
nn.init.constant_(m.bias, 0)
|
| 77 |
+
elif isinstance(m, nn.LayerNorm):
|
| 78 |
+
nn.init.constant_(m.bias, 0)
|
| 79 |
+
nn.init.constant_(m.weight, 1.0)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class MultiheadAttention(nn.Module):
|
| 83 |
+
def __init__(
|
| 84 |
+
self,
|
| 85 |
+
*,
|
| 86 |
+
device: torch.device,
|
| 87 |
+
dtype: torch.dtype,
|
| 88 |
+
n_ctx: int,
|
| 89 |
+
width: int,
|
| 90 |
+
heads: int,
|
| 91 |
+
qkv_bias: bool
|
| 92 |
+
):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.n_ctx = n_ctx
|
| 95 |
+
self.width = width
|
| 96 |
+
self.heads = heads
|
| 97 |
+
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
|
| 98 |
+
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
| 99 |
+
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx)
|
| 100 |
+
|
| 101 |
+
def forward(self, x):
|
| 102 |
+
x = self.c_qkv(x)
|
| 103 |
+
x = checkpoint(self.attention, (x,), (), True)
|
| 104 |
+
x = self.c_proj(x)
|
| 105 |
+
return x
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class QKVMultiheadAttention(nn.Module):
|
| 109 |
+
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int):
|
| 110 |
+
super().__init__()
|
| 111 |
+
self.device = device
|
| 112 |
+
self.dtype = dtype
|
| 113 |
+
self.heads = heads
|
| 114 |
+
self.n_ctx = n_ctx
|
| 115 |
+
|
| 116 |
+
def forward(self, qkv):
|
| 117 |
+
bs, n_ctx, width = qkv.shape
|
| 118 |
+
attn_ch = width // self.heads // 3
|
| 119 |
+
scale = 1 / math.sqrt(attn_ch)
|
| 120 |
+
qkv = qkv.view(bs, n_ctx, self.heads, -1)
|
| 121 |
+
q, k, v = torch.split(qkv, attn_ch, dim=-1)
|
| 122 |
+
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
|
| 123 |
+
wdtype = weight.dtype
|
| 124 |
+
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
| 125 |
+
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class ResidualAttentionBlock(nn.Module):
|
| 129 |
+
def __init__(
|
| 130 |
+
self,
|
| 131 |
+
*,
|
| 132 |
+
device: torch.device,
|
| 133 |
+
dtype: torch.dtype,
|
| 134 |
+
n_ctx: int,
|
| 135 |
+
width: int,
|
| 136 |
+
heads: int,
|
| 137 |
+
qkv_bias: bool = True,
|
| 138 |
+
use_checkpoint: bool = False
|
| 139 |
+
):
|
| 140 |
+
super().__init__()
|
| 141 |
+
|
| 142 |
+
self.use_checkpoint = use_checkpoint
|
| 143 |
+
|
| 144 |
+
self.attn = MultiheadAttention(
|
| 145 |
+
device=device,
|
| 146 |
+
dtype=dtype,
|
| 147 |
+
n_ctx=n_ctx,
|
| 148 |
+
width=width,
|
| 149 |
+
heads=heads,
|
| 150 |
+
qkv_bias=qkv_bias
|
| 151 |
+
)
|
| 152 |
+
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
| 153 |
+
self.mlp = MLP(device=device, dtype=dtype, width=width)
|
| 154 |
+
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
|
| 155 |
+
|
| 156 |
+
def _forward(self, x: torch.Tensor):
|
| 157 |
+
x = x + self.attn(self.ln_1(x))
|
| 158 |
+
x = x + self.mlp(self.ln_2(x))
|
| 159 |
+
return x
|
| 160 |
+
|
| 161 |
+
def forward(self, x: torch.Tensor):
|
| 162 |
+
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class MultiheadCrossAttention(nn.Module):
|
| 166 |
+
def __init__(
|
| 167 |
+
self,
|
| 168 |
+
*,
|
| 169 |
+
device: torch.device,
|
| 170 |
+
dtype: torch.dtype,
|
| 171 |
+
width: int,
|
| 172 |
+
heads: int,
|
| 173 |
+
qkv_bias: bool = True,
|
| 174 |
+
n_data: Optional[int] = None,
|
| 175 |
+
data_width: Optional[int] = None,
|
| 176 |
+
):
|
| 177 |
+
super().__init__()
|
| 178 |
+
self.n_data = n_data
|
| 179 |
+
self.width = width
|
| 180 |
+
self.heads = heads
|
| 181 |
+
self.data_width = width if data_width is None else data_width
|
| 182 |
+
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
|
| 183 |
+
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
|
| 184 |
+
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
| 185 |
+
self.attention = QKVMultiheadCrossAttention(
|
| 186 |
+
device=device, dtype=dtype, heads=heads, n_data=n_data
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
def forward(self, x, data):
|
| 190 |
+
x = self.c_q(x)
|
| 191 |
+
data = self.c_kv(data)
|
| 192 |
+
x = checkpoint(self.attention, (x, data), (), True)
|
| 193 |
+
x = self.c_proj(x)
|
| 194 |
+
return x
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class QKVMultiheadCrossAttention(nn.Module):
|
| 198 |
+
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_data: Optional[int] = None):
|
| 199 |
+
super().__init__()
|
| 200 |
+
self.device = device
|
| 201 |
+
self.dtype = dtype
|
| 202 |
+
self.heads = heads
|
| 203 |
+
self.n_data = n_data
|
| 204 |
+
|
| 205 |
+
def forward(self, q, kv):
|
| 206 |
+
_, n_ctx, _ = q.shape
|
| 207 |
+
bs, n_data, width = kv.shape
|
| 208 |
+
attn_ch = width // self.heads // 2
|
| 209 |
+
scale = 1 / math.sqrt(attn_ch)
|
| 210 |
+
q = q.view(bs, n_ctx, self.heads, -1)
|
| 211 |
+
kv = kv.view(bs, n_data, self.heads, -1)
|
| 212 |
+
k, v = torch.split(kv, attn_ch, dim=-1)
|
| 213 |
+
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
|
| 214 |
+
wdtype = weight.dtype
|
| 215 |
+
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
| 216 |
+
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
class ResidualCrossAttentionBlock(nn.Module):
|
| 220 |
+
def __init__(
|
| 221 |
+
self,
|
| 222 |
+
*,
|
| 223 |
+
device: Optional[torch.device],
|
| 224 |
+
dtype: Optional[torch.dtype],
|
| 225 |
+
n_data: Optional[int] = None,
|
| 226 |
+
width: int,
|
| 227 |
+
heads: int,
|
| 228 |
+
data_width: Optional[int] = None,
|
| 229 |
+
qkv_bias: bool = True
|
| 230 |
+
):
|
| 231 |
+
super().__init__()
|
| 232 |
+
|
| 233 |
+
if data_width is None:
|
| 234 |
+
data_width = width
|
| 235 |
+
|
| 236 |
+
self.attn = MultiheadCrossAttention(
|
| 237 |
+
device=device,
|
| 238 |
+
dtype=dtype,
|
| 239 |
+
n_data=n_data,
|
| 240 |
+
width=width,
|
| 241 |
+
heads=heads,
|
| 242 |
+
data_width=data_width,
|
| 243 |
+
qkv_bias=qkv_bias
|
| 244 |
+
)
|
| 245 |
+
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
| 246 |
+
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
|
| 247 |
+
self.mlp = MLP(device=device, dtype=dtype, width=width)
|
| 248 |
+
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
|
| 249 |
+
|
| 250 |
+
def forward(self, x: torch.Tensor, data: torch.Tensor):
|
| 251 |
+
x = x + self.attn(self.ln_1(x), self.ln_2(data))
|
| 252 |
+
x = x + self.mlp(self.ln_3(x))
|
| 253 |
+
return x
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class MLP(nn.Module):
|
| 257 |
+
def __init__(self, *,
|
| 258 |
+
device: Optional[torch.device],
|
| 259 |
+
dtype: Optional[torch.dtype],
|
| 260 |
+
width: int):
|
| 261 |
+
super().__init__()
|
| 262 |
+
self.width = width
|
| 263 |
+
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
|
| 264 |
+
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
|
| 265 |
+
self.gelu = nn.GELU()
|
| 266 |
+
|
| 267 |
+
def forward(self, x):
|
| 268 |
+
return self.c_proj(self.gelu(self.c_fc(x)))
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class Transformer(nn.Module):
|
| 272 |
+
def __init__(
|
| 273 |
+
self,
|
| 274 |
+
*,
|
| 275 |
+
device: Optional[torch.device],
|
| 276 |
+
dtype: Optional[torch.dtype],
|
| 277 |
+
n_ctx: int,
|
| 278 |
+
width: int,
|
| 279 |
+
layers: int,
|
| 280 |
+
heads: int,
|
| 281 |
+
qkv_bias: bool = True,
|
| 282 |
+
use_checkpoint: bool = False
|
| 283 |
+
):
|
| 284 |
+
super().__init__()
|
| 285 |
+
self.n_ctx = n_ctx
|
| 286 |
+
self.width = width
|
| 287 |
+
self.layers = layers
|
| 288 |
+
self.resblocks = nn.ModuleList(
|
| 289 |
+
[
|
| 290 |
+
ResidualAttentionBlock(
|
| 291 |
+
device=device,
|
| 292 |
+
dtype=dtype,
|
| 293 |
+
n_ctx=n_ctx,
|
| 294 |
+
width=width,
|
| 295 |
+
heads=heads,
|
| 296 |
+
qkv_bias=qkv_bias,
|
| 297 |
+
use_checkpoint=use_checkpoint
|
| 298 |
+
)
|
| 299 |
+
for _ in range(layers)
|
| 300 |
+
]
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
self.apply(init_weights)
|
| 304 |
+
|
| 305 |
+
def forward(self, x: torch.Tensor):
|
| 306 |
+
for block in self.resblocks:
|
| 307 |
+
x = block(x)
|
| 308 |
+
return x
|