Update README.md
Browse files
README.md
CHANGED
|
@@ -2661,12 +2661,15 @@ Training data to train the models is released in its entirety. For more details,
|
|
| 2661 |
|
| 2662 |
## Usage
|
| 2663 |
|
|
|
|
|
|
|
|
|
|
| 2664 |
### Sentence Transformers
|
| 2665 |
```python
|
| 2666 |
from sentence_transformers import SentenceTransformer
|
| 2667 |
|
| 2668 |
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
| 2669 |
-
sentences = ['What is TSNE?', 'Who is Laurens van der Maaten?']
|
| 2670 |
embeddings = model.encode(sentences)
|
| 2671 |
print(embeddings)
|
| 2672 |
```
|
|
@@ -2683,7 +2686,7 @@ def mean_pooling(model_output, attention_mask):
|
|
| 2683 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 2684 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 2685 |
|
| 2686 |
-
sentences = ['What is TSNE?', 'Who is Laurens van der Maaten?']
|
| 2687 |
|
| 2688 |
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
| 2689 |
model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
|
|
|
|
| 2661 |
|
| 2662 |
## Usage
|
| 2663 |
|
| 2664 |
+
Note `nomic-embed-text` requires prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`.
|
| 2665 |
+
For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries.
|
| 2666 |
+
|
| 2667 |
### Sentence Transformers
|
| 2668 |
```python
|
| 2669 |
from sentence_transformers import SentenceTransformer
|
| 2670 |
|
| 2671 |
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
| 2672 |
+
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
|
| 2673 |
embeddings = model.encode(sentences)
|
| 2674 |
print(embeddings)
|
| 2675 |
```
|
|
|
|
| 2686 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 2687 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 2688 |
|
| 2689 |
+
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
|
| 2690 |
|
| 2691 |
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
| 2692 |
model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
|