Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -2664,10 +2664,11 @@ def mean_pooling(model_output, attention_mask): | |
| 2664 | 
             
                input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
         | 
| 2665 | 
             
                return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
         | 
| 2666 |  | 
| 2667 | 
            -
            sentences = [' | 
| 2668 |  | 
| 2669 | 
             
            tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
         | 
| 2670 | 
            -
            model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1- | 
|  | |
| 2671 |  | 
| 2672 | 
             
            encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
         | 
| 2673 |  | 
|  | |
| 2664 | 
             
                input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
         | 
| 2665 | 
             
                return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
         | 
| 2666 |  | 
| 2667 | 
            +
            sentences = ['What is TSNE?', 'Who is Laurens van der Maaten?']
         | 
| 2668 |  | 
| 2669 | 
             
            tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
         | 
| 2670 | 
            +
            model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-ablated', trust_remote_code=True)
         | 
| 2671 | 
            +
            model.eval()
         | 
| 2672 |  | 
| 2673 | 
             
            encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
         | 
| 2674 |  | 

