Update modeling_hf_nomic_bert.py
Browse files
modeling_hf_nomic_bert.py
CHANGED
|
@@ -16,7 +16,7 @@ from einops import rearrange, repeat
|
|
| 16 |
from transformers import GPT2Config, PreTrainedModel
|
| 17 |
from transformers.models.bert.modeling_bert import (
|
| 18 |
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 19 |
-
|
| 20 |
SequenceClassifierOutput
|
| 21 |
)
|
| 22 |
|
|
@@ -323,6 +323,8 @@ class NomicBertPreTrainedModel(PreTrainedModel):
|
|
| 323 |
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
|
| 324 |
if rotary_scaling_factor:
|
| 325 |
config.rotary_scaling_factor = rotary_scaling_factor
|
|
|
|
|
|
|
| 326 |
if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
|
| 327 |
config.n_positions = 2048
|
| 328 |
if num_labels:
|
|
@@ -1145,9 +1147,11 @@ class NomicBertForPreTraining(NomicBertPreTrainedModel):
|
|
| 1145 |
)
|
| 1146 |
total_loss = masked_lm_loss.float()
|
| 1147 |
|
| 1148 |
-
return
|
| 1149 |
loss=total_loss,
|
| 1150 |
-
|
|
|
|
|
|
|
| 1151 |
)
|
| 1152 |
|
| 1153 |
|
|
|
|
| 16 |
from transformers import GPT2Config, PreTrainedModel
|
| 17 |
from transformers.models.bert.modeling_bert import (
|
| 18 |
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 19 |
+
MaskedLMOutput,
|
| 20 |
SequenceClassifierOutput
|
| 21 |
)
|
| 22 |
|
|
|
|
| 323 |
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
|
| 324 |
if rotary_scaling_factor:
|
| 325 |
config.rotary_scaling_factor = rotary_scaling_factor
|
| 326 |
+
else:
|
| 327 |
+
config.rotary_scaling_factor = None
|
| 328 |
if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
|
| 329 |
config.n_positions = 2048
|
| 330 |
if num_labels:
|
|
|
|
| 1147 |
)
|
| 1148 |
total_loss = masked_lm_loss.float()
|
| 1149 |
|
| 1150 |
+
return MaskedLMOutput(
|
| 1151 |
loss=total_loss,
|
| 1152 |
+
logits=prediction_scores,
|
| 1153 |
+
hidden_states=outputs.hidden_states,
|
| 1154 |
+
attentions=None,
|
| 1155 |
)
|
| 1156 |
|
| 1157 |
|