Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- w4a16
|
| 4 |
+
- int4
|
| 5 |
+
- vllm
|
| 6 |
+
- audio
|
| 7 |
+
license: apache-2.0
|
| 8 |
+
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
|
| 9 |
+
language:
|
| 10 |
+
- en
|
| 11 |
+
base_model: openai/whisper-large-v3
|
| 12 |
+
library_name: transformers
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# whisper-large-v3-quantized.w4a16
|
| 16 |
+
|
| 17 |
+
## Model Overview
|
| 18 |
+
- **Model Architecture:** whisper-large-v3
|
| 19 |
+
- **Input:** Audio-Text
|
| 20 |
+
- **Output:** Text
|
| 21 |
+
- **Model Optimizations:**
|
| 22 |
+
- **Weight quantization:** INT4
|
| 23 |
+
- **Activation quantization:** FP16
|
| 24 |
+
- **Release Date:** 1/31/2025
|
| 25 |
+
- **Version:** 1.0
|
| 26 |
+
- **Model Developers:** Neural Magic
|
| 27 |
+
|
| 28 |
+
Quantized version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3).
|
| 29 |
+
|
| 30 |
+
### Model Optimizations
|
| 31 |
+
|
| 32 |
+
This model was obtained by quantizing the weights of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) to INT4 data type, ready for inference with vLLM >= 0.5.2.
|
| 33 |
+
|
| 34 |
+
## Deployment
|
| 35 |
+
|
| 36 |
+
### Use with vLLM
|
| 37 |
+
|
| 38 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
from vllm.assets.audio import AudioAsset
|
| 42 |
+
from vllm import LLM, SamplingParams
|
| 43 |
+
|
| 44 |
+
# prepare model
|
| 45 |
+
llm = LLM(
|
| 46 |
+
model="neuralmagic/whisper-large-v3.w4a16",
|
| 47 |
+
max_model_len=448,
|
| 48 |
+
max_num_seqs=400,
|
| 49 |
+
limit_mm_per_prompt={"audio": 1},
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# prepare inputs
|
| 53 |
+
inputs = { # Test explicit encoder/decoder prompt
|
| 54 |
+
"encoder_prompt": {
|
| 55 |
+
"prompt": "",
|
| 56 |
+
"multi_modal_data": {
|
| 57 |
+
"audio": AudioAsset("winning_call").audio_and_sample_rate,
|
| 58 |
+
},
|
| 59 |
+
},
|
| 60 |
+
"decoder_prompt": "<|startoftranscript|>",
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
# generate response
|
| 64 |
+
print("========== SAMPLE GENERATION ==============")
|
| 65 |
+
outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64))
|
| 66 |
+
print(f"PROMPT : {outputs[0].prompt}")
|
| 67 |
+
print(f"RESPONSE: {outputs[0].outputs[0].text}")
|
| 68 |
+
print("==========================================")
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
| 72 |
+
|
| 73 |
+
## Creation
|
| 74 |
+
|
| 75 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
|
| 76 |
+
|
| 77 |
+
```python
|
| 78 |
+
import torch
|
| 79 |
+
from datasets import load_dataset
|
| 80 |
+
from transformers import WhisperProcessor
|
| 81 |
+
|
| 82 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
| 83 |
+
from llmcompressor.transformers import oneshot
|
| 84 |
+
from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration
|
| 85 |
+
|
| 86 |
+
# Select model and load it.
|
| 87 |
+
MODEL_ID = "openai/whisper-large-v3"
|
| 88 |
+
|
| 89 |
+
model = TraceableWhisperForConditionalGeneration.from_pretrained(
|
| 90 |
+
MODEL_ID,
|
| 91 |
+
device_map="auto",
|
| 92 |
+
torch_dtype="auto",
|
| 93 |
+
)
|
| 94 |
+
model.config.forced_decoder_ids = None
|
| 95 |
+
processor = WhisperProcessor.from_pretrained(MODEL_ID)
|
| 96 |
+
|
| 97 |
+
# Configure processor the dataset task.
|
| 98 |
+
processor.tokenizer.set_prefix_tokens(language="en", task="transcribe")
|
| 99 |
+
|
| 100 |
+
# Select calibration dataset.
|
| 101 |
+
DATASET_ID = "MLCommons/peoples_speech"
|
| 102 |
+
DATASET_SUBSET = "test"
|
| 103 |
+
DATASET_SPLIT = "test"
|
| 104 |
+
|
| 105 |
+
# Select number of samples. 512 samples is a good place to start.
|
| 106 |
+
# Increasing the number of samples can improve accuracy.
|
| 107 |
+
NUM_CALIBRATION_SAMPLES = 512
|
| 108 |
+
MAX_SEQUENCE_LENGTH = 2048
|
| 109 |
+
|
| 110 |
+
# Load dataset and preprocess.
|
| 111 |
+
ds = load_dataset(
|
| 112 |
+
DATASET_ID,
|
| 113 |
+
DATASET_SUBSET,
|
| 114 |
+
split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]",
|
| 115 |
+
trust_remote_code=True,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def preprocess(example):
|
| 120 |
+
return {
|
| 121 |
+
"array": example["audio"]["array"],
|
| 122 |
+
"sampling_rate": example["audio"]["sampling_rate"],
|
| 123 |
+
"text": " " + example["text"].capitalize(),
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
ds = ds.map(preprocess, remove_columns=ds.column_names)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# Process inputs.
|
| 131 |
+
def process(sample):
|
| 132 |
+
inputs = processor(
|
| 133 |
+
audio=sample["array"],
|
| 134 |
+
sampling_rate=sample["sampling_rate"],
|
| 135 |
+
text=sample["text"],
|
| 136 |
+
add_special_tokens=True,
|
| 137 |
+
return_tensors="pt",
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
inputs["input_features"] = inputs["input_features"].to(dtype=model.dtype)
|
| 141 |
+
inputs["decoder_input_ids"] = inputs["labels"]
|
| 142 |
+
del inputs["labels"]
|
| 143 |
+
|
| 144 |
+
return inputs
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
ds = ds.map(process, remove_columns=ds.column_names)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# Define a oneshot data collator for multimodal inputs.
|
| 151 |
+
def data_collator(batch):
|
| 152 |
+
assert len(batch) == 1
|
| 153 |
+
return {key: torch.tensor(value) for key, value in batch[0].items()}
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
# Recipe
|
| 157 |
+
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"])
|
| 158 |
+
|
| 159 |
+
# Apply algorithms.
|
| 160 |
+
oneshot(
|
| 161 |
+
model=model,
|
| 162 |
+
dataset=ds,
|
| 163 |
+
recipe=recipe,
|
| 164 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
| 165 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
| 166 |
+
data_collator=data_collator,
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# Confirm generations of the quantized model look sane.
|
| 170 |
+
print("\n\n")
|
| 171 |
+
print("========== SAMPLE GENERATION ==============")
|
| 172 |
+
sample_features = next(iter(ds))["input_features"]
|
| 173 |
+
sample_decoder_ids = [processor.tokenizer.prefix_tokens]
|
| 174 |
+
sample_input = {
|
| 175 |
+
"input_features": torch.tensor(sample_features).to(model.device),
|
| 176 |
+
"decoder_input_ids": torch.tensor(sample_decoder_ids).to(model.device),
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
output = model.generate(**sample_input, language="en")
|
| 180 |
+
print(processor.batch_decode(output, skip_special_tokens=True))
|
| 181 |
+
print("==========================================\n\n")
|
| 182 |
+
# that's where you have a lot of windows in the south no actually that's passive solar
|
| 183 |
+
# and passive solar is something that was developed and designed in the 1960s and 70s
|
| 184 |
+
# and it was a great thing for what it was at the time but it's not a passive house
|
| 185 |
+
|
| 186 |
+
# Save to disk compressed.
|
| 187 |
+
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
|
| 188 |
+
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
| 189 |
+
processor.save_pretrained(SAVE_DIR)
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
## Evaluation
|
| 194 |
+
Base Model
|
| 195 |
+
```
|
| 196 |
+
Total Test Time: 94.4606 seconds
|
| 197 |
+
Total Requests: 511
|
| 198 |
+
Successful Requests: 511
|
| 199 |
+
Average Latency: 53.3529 seconds
|
| 200 |
+
Median Latency: 52.7258 seconds
|
| 201 |
+
95th Percentile Latency: 86.5851 seconds
|
| 202 |
+
Estimated req_Throughput: 5.41 requests/s
|
| 203 |
+
Estimated Throughput: 100.79 tok/s
|
| 204 |
+
WER: 12.660815197787665
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
W4A16
|
| 208 |
+
```
|
| 209 |
+
Total Test Time: 106.2064 seconds
|
| 210 |
+
Total Requests: 511
|
| 211 |
+
Successful Requests: 511
|
| 212 |
+
Average Latency: 59.7467 seconds
|
| 213 |
+
Median Latency: 58.3930 seconds
|
| 214 |
+
95th Percentile Latency: 97.4831 seconds
|
| 215 |
+
Estimated req_Throughput: 4.81 requests/s
|
| 216 |
+
Estimated Throughput: 89.35 tok/s
|
| 217 |
+
WER: 12.949380786341228
|
| 218 |
+
```
|
| 219 |
+
|
| 220 |
+
### BibTeX entry and citation info
|
| 221 |
+
```bibtex
|
| 222 |
+
@misc{radford2022whisper,
|
| 223 |
+
doi = {10.48550/ARXIV.2212.04356},
|
| 224 |
+
url = {https://arxiv.org/abs/2212.04356},
|
| 225 |
+
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
|
| 226 |
+
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
|
| 227 |
+
publisher = {arXiv},
|
| 228 |
+
year = {2022},
|
| 229 |
+
copyright = {arXiv.org perpetual, non-exclusive license}
|
| 230 |
+
}
|