Update README.md
Browse files
README.md
CHANGED
|
@@ -1,4 +1,35 @@
|
|
| 1 |
---
|
| 2 |
base_model:
|
| 3 |
- openbmb/MiniCPM-V-2_6
|
| 4 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
base_model:
|
| 3 |
- openbmb/MiniCPM-V-2_6
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
## Creation
|
| 7 |
+
|
| 8 |
+
```python
|
| 9 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 10 |
+
|
| 11 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
| 12 |
+
from llmcompressor.transformers import oneshot, wrap_hf_model_class
|
| 13 |
+
|
| 14 |
+
MODEL_ID = "openbmb/MiniCPM-V-2_6"
|
| 15 |
+
|
| 16 |
+
# Load model.
|
| 17 |
+
model_class = wrap_hf_model_class(AutoModelForCausalLM)
|
| 18 |
+
model = model_class.from_pretrained(MODEL_ID, torch_dtype="auto", trust_remote_code=True).to("cuda")
|
| 19 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 20 |
+
|
| 21 |
+
# Configure the quantization algorithm and scheme.
|
| 22 |
+
# In this case, we:
|
| 23 |
+
# * quantize the weights to fp8 with per channel via ptq
|
| 24 |
+
# * quantize the activations to fp8 with dynamic per token
|
| 25 |
+
recipe = QuantizationModifier(
|
| 26 |
+
targets="Linear",
|
| 27 |
+
scheme="FP8_DYNAMIC",
|
| 28 |
+
ignore=["re:.*lm_head", "re:resampler.*", "re:vpm.*"],
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Apply quantization and save to disk in compressed-tensors format.
|
| 32 |
+
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-dynamic"
|
| 33 |
+
oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR, trust_remote_code_model=True)
|
| 34 |
+
processor.save_pretrained(SAVE_DIR)
|
| 35 |
+
```
|