Update handler.py
Browse files- handler.py +59 -27
handler.py
CHANGED
|
@@ -1,25 +1,42 @@
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
from llama_cpp import Llama
|
| 3 |
import gemma_tools
|
|
|
|
| 4 |
|
| 5 |
MAX_TOKENS = 1000
|
| 6 |
|
| 7 |
|
| 8 |
-
class EndpointHandler
|
| 9 |
-
def __init__(self, model_dir=None):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
# Initialize the Llama model directly
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 21 |
-
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
args_check = gemma_tools.get_args_or_none(data)
|
| 24 |
|
| 25 |
if not args_check[0]: # If validation failed
|
|
@@ -29,26 +46,25 @@ class EndpointHandler():
|
|
| 29 |
"description": args_check.get("description", "Validation error in arguments")
|
| 30 |
}]
|
| 31 |
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
-
# Define the formatting template
|
| 35 |
-
|
| 36 |
|
| 37 |
try:
|
| 38 |
-
formatted_prompt =
|
| 39 |
-
|
| 40 |
except Exception as e:
|
| 41 |
-
|
| 42 |
return [{
|
| 43 |
"status": "error",
|
| 44 |
"reason": "Invalid format",
|
| 45 |
"detail": str(e)
|
| 46 |
}]
|
| 47 |
|
|
|
|
| 48 |
max_length = data.get("max_length", 212)
|
| 49 |
try:
|
| 50 |
max_length = int(max_length)
|
| 51 |
-
|
| 52 |
except ValueError:
|
| 53 |
return [{
|
| 54 |
"status": "error",
|
|
@@ -56,16 +72,32 @@ class EndpointHandler():
|
|
| 56 |
"detail": "max_length was not a valid integer"
|
| 57 |
}]
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
return [{
|
| 68 |
"status": "success",
|
| 69 |
-
#
|
| 70 |
-
"response": res['choices'][0]['text']
|
| 71 |
}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
from llama_cpp import Llama
|
| 3 |
import gemma_tools
|
| 4 |
+
import os
|
| 5 |
|
| 6 |
MAX_TOKENS = 1000
|
| 7 |
|
| 8 |
|
| 9 |
+
class EndpointHandler:
|
| 10 |
+
def __init__(self, model_dir: str = None):
|
| 11 |
+
"""
|
| 12 |
+
Initialize the EndpointHandler with the path to the model directory.
|
|
|
|
| 13 |
|
| 14 |
+
:param model_dir: Path to the directory containing the model file.
|
| 15 |
+
"""
|
| 16 |
+
if model_dir:
|
| 17 |
+
# Update the model filename to match the one in your repository
|
| 18 |
+
model_path = os.path.join(
|
| 19 |
+
model_dir, "comic_mistral-v5.2.q5_0.gguf")
|
| 20 |
+
if not os.path.exists(model_path):
|
| 21 |
+
raise FileNotFoundError(
|
| 22 |
+
f"The model file was not found at {model_path}")
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
self.model = Llama(
|
| 26 |
+
model_path=model_path,
|
| 27 |
+
n_ctx=MAX_TOKENS, # Use n_ctx for context size in llama_cpp
|
| 28 |
+
)
|
| 29 |
+
except Exception as e:
|
| 30 |
+
raise RuntimeError(f"Failed to load the model: {e}")
|
| 31 |
|
| 32 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 33 |
+
"""
|
| 34 |
+
Handle incoming requests for model inference.
|
| 35 |
|
| 36 |
+
:param data: Dictionary containing input data and parameters for the model.
|
| 37 |
+
:return: A list with a dictionary containing the status and response or error details.
|
| 38 |
+
"""
|
| 39 |
+
# Extract and validate arguments from the data
|
| 40 |
args_check = gemma_tools.get_args_or_none(data)
|
| 41 |
|
| 42 |
if not args_check[0]: # If validation failed
|
|
|
|
| 46 |
"description": args_check.get("description", "Validation error in arguments")
|
| 47 |
}]
|
| 48 |
|
| 49 |
+
# If validation passed, args are in the second element of the tuple
|
| 50 |
+
args = args_check[1]
|
| 51 |
|
| 52 |
+
# Define the formatting template for the prompt
|
| 53 |
+
prompt_format = "<startofturn>system\n{system_prompt} <endofturn>\n<startofturn>user\n{inputs} <endofturn>\n<startofturn>model"
|
| 54 |
|
| 55 |
try:
|
| 56 |
+
formatted_prompt = prompt_format.format(**args)
|
|
|
|
| 57 |
except Exception as e:
|
|
|
|
| 58 |
return [{
|
| 59 |
"status": "error",
|
| 60 |
"reason": "Invalid format",
|
| 61 |
"detail": str(e)
|
| 62 |
}]
|
| 63 |
|
| 64 |
+
# Parse max_length, default to 212 if not provided or invalid
|
| 65 |
max_length = data.get("max_length", 212)
|
| 66 |
try:
|
| 67 |
max_length = int(max_length)
|
|
|
|
| 68 |
except ValueError:
|
| 69 |
return [{
|
| 70 |
"status": "error",
|
|
|
|
| 72 |
"detail": "max_length was not a valid integer"
|
| 73 |
}]
|
| 74 |
|
| 75 |
+
# Perform inference
|
| 76 |
+
try:
|
| 77 |
+
res = self.model(
|
| 78 |
+
formatted_prompt,
|
| 79 |
+
temperature=args["temperature"],
|
| 80 |
+
top_p=args["top_p"],
|
| 81 |
+
top_k=args["top_k"],
|
| 82 |
+
max_tokens=max_length
|
| 83 |
+
)
|
| 84 |
+
except Exception as e:
|
| 85 |
+
return [{
|
| 86 |
+
"status": "error",
|
| 87 |
+
"reason": "Inference failed",
|
| 88 |
+
"detail": str(e)
|
| 89 |
+
}]
|
| 90 |
|
| 91 |
return [{
|
| 92 |
"status": "success",
|
| 93 |
+
# Extract the text from the response
|
| 94 |
+
"response": res['choices'][0]['text'].strip()
|
| 95 |
}]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# Usage in your script or where the handler is instantiated:
|
| 99 |
+
try:
|
| 100 |
+
handler = EndpointHandler("/repository")
|
| 101 |
+
except (FileNotFoundError, RuntimeError) as e:
|
| 102 |
+
print(f"Initialization error: {e}")
|
| 103 |
+
exit(1) # Exit with an error code if the handler cannot be initialized
|