neoyipeng commited on
Commit
95001e1
·
verified ·
1 Parent(s): 88b8f04

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -1,3 +1,4 @@
 
1
  ---
2
  language: en
3
  license: apache-2.0
@@ -6,18 +7,17 @@ tags:
6
  - sentiment-analysis
7
  - modernbert
8
  - financial-nlp
9
- - unsloth
10
  datasets:
11
  - neoyipeng/financial_reasoning_aggregated
12
  metrics:
13
  - accuracy
14
  widget:
15
- - text: The company reported strong quarterly earnings with revenue beating expectations.
16
- example_title: Positive Example
17
- - text: Stock prices fell sharply following disappointing guidance from management.
18
- example_title: Negative Example
19
- - text: The merger is expected to close in Q3 pending regulatory approval.
20
- example_title: Neutral Example
21
  ---
22
 
23
  # ModernFinBERT: Financial Sentiment Analysis
@@ -33,7 +33,7 @@ ModernFinBERT is a financial sentiment analysis model based on the ModernBERT ar
33
 
34
  ## Performance
35
 
36
- - **FinancialPhraseBank Accuracy**: 90.47%
37
  - **Target**: >94% accuracy on FinancialPhraseBank
38
 
39
  ## Usage
@@ -50,7 +50,7 @@ inputs = tokenizer(text, return_tensors="pt")
50
  outputs = model(**inputs)
51
  predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
52
 
53
- labels = ["NEGATIVE", "NEUTRAL", "POSITIVE"]
54
  predicted_class = labels[predictions.argmax().item()]
55
  confidence = predictions.max().item()
56
 
 
1
+
2
  ---
3
  language: en
4
  license: apache-2.0
 
7
  - sentiment-analysis
8
  - modernbert
9
  - financial-nlp
 
10
  datasets:
11
  - neoyipeng/financial_reasoning_aggregated
12
  metrics:
13
  - accuracy
14
  widget:
15
+ - text: "The company reported strong quarterly earnings with revenue beating expectations."
16
+ example_title: "Positive Example"
17
+ - text: "Stock prices fell sharply following disappointing guidance from management."
18
+ example_title: "Negative Example"
19
+ - text: "The merger is expected to close in Q3 pending regulatory approval."
20
+ example_title: "Neutral Example"
21
  ---
22
 
23
  # ModernFinBERT: Financial Sentiment Analysis
 
33
 
34
  ## Performance
35
 
36
+ - **FinancialPhraseBank Accuracy**: 91.21%
37
  - **Target**: >94% accuracy on FinancialPhraseBank
38
 
39
  ## Usage
 
50
  outputs = model(**inputs)
51
  predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
52
 
53
+ labels = ["NEGATIVE", "NEUTRAL", "POSITIVE"]
54
  predicted_class = labels[predictions.argmax().item()]
55
  confidence = predictions.max().item()
56