ndkhanh95's picture
Upload 304 files
fa1a600 verified
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train loop for training the stage-II model."""
# pylint: disable=consider-using-from-import
import functools
import importlib
import multiprocessing.pool
import os
from absl import app
from absl import flags
from absl import logging
from big_vision import input_pipeline
import big_vision.datasets.core as ds_core
import big_vision.evaluators.common as eval_common
import big_vision.models.proj.uvim.decode as decode
import big_vision.optax as bv_optax
import big_vision.pp.builder as pp_builder
import big_vision.utils as u
from clu import parameter_overview
import flax
import jax
import jax.numpy as jnp
from ml_collections import config_flags
import numpy as np
import optax
import tensorflow.io.gfile as gfile
config_flags.DEFINE_config_file(
"config", None, "Training configuration.", lock_config=True)
flags.DEFINE_string("workdir", default=None, help="Work unit directory.")
flags.DEFINE_boolean("cleanup", default=False,
help="Delete workdir (only) after successful completion.")
# Adds jax flags to the program.
jax.config.parse_flags_with_absl()
FLAGS = flags.FLAGS
ONE_HOT_AXIS = -2
partial = functools.partial
def get_model(config):
mod = importlib.import_module(f"big_vision.models.{config.model_name}")
model = mod.Model(**config.model)
return model, mod
def setup_task(config):
"""Get functions and params to encode and decode labels as token sequences."""
config = config.oracle
# Define task input and predict functions.
task_module = importlib.import_module(f"big_vision.trainers.{config.task}")
input_fn = partial(task_module.input_pp, config=config)
predict_outputs_fn = partial(task_module.predict_outputs, config=config)
oracle, mod = get_model(config)
if config.get("model_init", None):
params, state = mod.load(None, config.model_init)
params = {"params": params, "state": state}
else:
params = {}
def encode_labels(params, batch):
inputs = input_fn(batch)
code = oracle.apply(params, **inputs, method=oracle.encode)[1]["code"]
return code + 1 # To avoid padding symbol.
def decode_labels(params, code, batch, **kwargs):
code = code - 1
inputs = input_fn(batch)
inputs["x"] = code
logits, _ = oracle.apply(
params, **inputs, discrete_input=True, **kwargs, method=oracle.decode)
return logits
return encode_labels, decode_labels, predict_outputs_fn, params
def main(argv):
del argv
config = FLAGS.config
workdir = FLAGS.workdir
logging.info("\u001b[33mHello from process %i holding %i/%i devices and "
"writing to workdir %s.\u001b[0m", jax.process_index(),
jax.local_device_count(), jax.device_count(), workdir)
save_ckpt_path = None
if workdir: # Always create if requested, even if we may not write into it.
gfile.makedirs(workdir)
save_ckpt_path = os.path.join(workdir, "checkpoint.npz")
# The pool is used to perform misc operations such as logging in async way.
pool = multiprocessing.pool.ThreadPool()
# Here we register preprocessing ops from modules listed on `pp_modules`.
for m in config.get("pp_modules",
["ops_general", "ops_image", "proj.uvim.pp_ops"]):
importlib.import_module(f"big_vision.pp.{m}")
# This seed makes the Jax part of things (like model init) deterministic.
# However, full training still won't be deterministic, for example due to the
# tf.data pipeline not being deterministic even if we would set TF seed.
# See (internal link) for a fun read on what it takes.
rng = jax.random.PRNGKey(config.get("seed", 0))
# These functions do more stuff internally, for OSS release we mock them by
# trivial alternatives in order to minize disruptions in the code.
xid, wid = -1, -1
fillin = lambda s: s
def info(s, *a):
logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a)
def write_note(note):
if jax.process_index() == 0:
info("%s", note)
write_note("Initializing...")
batch_size = config.input.batch_size
if batch_size % jax.device_count() != 0:
raise ValueError(f"Batch size ({batch_size}) must "
f"be divisible by device number ({jax.device_count()})")
info("Global batch size %d on %d hosts results in %d local batch size. With "
"%d dev per host (%d dev total), that's a %d per-device batch size.",
batch_size, jax.process_count(), batch_size // jax.process_count(),
jax.local_device_count(), jax.device_count(),
batch_size // jax.device_count())
# First thing after above sanity checks, so we can log "start" ticks.
mw = u.BigVisionMetricWriter(xid, wid, workdir, config)
chrono = u.Chrono()
write_note("Initializing train dataset...")
train_data = ds_core.get(**config.input.data)
train_ds = input_pipeline.make_for_train(
data=train_data.get_tfdata(ordered=False),
batch_size=batch_size,
preprocess_fn=pp_builder.get_preprocess_fn(config.input.get("pp")),
shuffle_buffer_size=config.input.get("shuffle_buffer_size"),
cache_raw=config.input.get("cache_raw", False),
filter_fn=config.input.get("filter_fn"),
)
# Start prefetching already.
n_prefetch = config.get("prefetch_to_device", 1)
train_iter = input_pipeline.start_input_pipeline(train_ds, n_prefetch)
ntrain_img = train_data.total_examples
def get_steps(name, default=ValueError): # partial doesn't work well here.
return u.steps(name, config, ntrain_img, batch_size, default)
total_steps = get_steps("total")
info("Running for %d steps, that means %f epochs",
total_steps, total_steps * batch_size / ntrain_img)
write_note(f"Initializing {config.model_name} model...")
model, model_mod = get_model(config)
encode_labels, decode_labels, predict_outputs_fn, task_params = (
setup_task(config))
# We want all parameters to be created in host RAM, not on any device, they'll
# be sent there later as needed, otherwise we already encountered two
# situations where we allocate them twice.
@partial(jax.jit, backend="cpu")
def init(rng):
batch = jax.tree_map(
lambda x: jnp.zeros(x.shape, x.dtype.as_numpy_dtype),
train_ds.element_spec)
images = batch["image"]
labels = encode_labels(task_params, batch)
variables = model.init(rng, images, labels)
params = flax.core.unfreeze(variables["params"])
return params
rng, init_rng = jax.random.split(rng)
params_cpu = init(init_rng)
if jax.process_index() == 0:
num_params = sum(p.size for p in jax.tree_leaves(params_cpu))
parameter_overview.log_parameter_overview(params_cpu, msg="init params")
mw.measure("num_params", num_params)
write_note(f"Initializing {config.optax_name} optimizer...")
tx, sched_fns = bv_optax.make(config, params_cpu, sched_kw=dict(
total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img))
# We jit this, such that the arrays are created on the CPU, not device[0].
opt_cpu = jax.jit(tx.init, backend="cpu")(params_cpu)
sched_fns_cpu = [jax.jit(sched_fn, backend="cpu") for sched_fn in sched_fns]
@partial(jax.pmap, axis_name="batch", donate_argnums=(0, 1))
def update_fn(params, opt, batch, update_rng, task_params):
"""Update step."""
images = batch["image"]
labels = encode_labels(task_params, batch)
measurements = {}
rng, new_rng = jax.random.split(update_rng)
# bind the rng key to the device id (which is unique across hosts)
rng_local = jax.random.fold_in(rng, jax.lax.axis_index("batch"))
def loss_fn(params, images, labels):
logits = model.apply({"params": params}, images, labels, train=True,
rngs={"dropout": rng_local})
loss = u.weighted_softmax_xent(
logits=logits, labels=labels,
reduction=True, normalize=True)
return loss
l, grads = jax.value_and_grad(loss_fn)(params, images, labels)
l, grads = jax.lax.pmean((l, grads), axis_name="batch")
updates, opt = tx.update(grads, opt, params)
params = optax.apply_updates(params, updates)
gs = jax.tree_leaves(bv_optax.replace_frozen(config.schedule, grads, 0.))
measurements["l2_grads"] = jnp.sqrt(sum([jnp.vdot(g, g) for g in gs]))
ps = jax.tree_leaves(params)
measurements["l2_params"] = jnp.sqrt(sum([jnp.vdot(p, p) for p in ps]))
us = jax.tree_leaves(updates)
measurements["l2_updates"] = jnp.sqrt(sum([jnp.vdot(u, u) for u in us]))
return params, opt, l, new_rng, measurements
# Define evaluators.
def validation_fn(params, batch):
"""Compute per-example metrics."""
params, task_params = params["params"], params["task_params"]
images = batch["image"]
labels = encode_labels(task_params, batch)
logits = model.apply({"params": params}, images, labels, train=False)
loss = u.weighted_softmax_xent(
logits=logits, labels=labels,
reduction=False, normalize=True)
losses = {"loss": loss}
return jax.tree_map(
lambda x: jnp.mean(x, axis=tuple(range(1, x.ndim))),
losses)
def predict_fn(params, batch, seed=0, temperature=1e-7, **extra):
params, task_params = params["params"], params["task_params"]
# Derive a rng key from the inputs so that all batches use different keys.
if "image/id" in batch:
key = batch["image/id"]
else:
key = batch["image"].sum(axis=[1, 2, 3]).astype(jnp.int32)
local_rng = jax.lax.scan(
lambda k, x: (jax.random.fold_in(k, x), None),
jax.random.PRNGKey(seed),
key,
)[0]
images = batch["image"]
batch_size = images.shape[0]
prompts = jnp.zeros((batch_size, config.model.seq_len), dtype=jnp.int32)
seqs, _, _ = decode.temperature_sampling(
params={"params": params}, model=model, seed=local_rng,
inputs=images, prompts=prompts,
num_samples=1, eos_token=-1, prefill=False,
temperature=temperature)
seqs = jnp.squeeze(seqs, 1)
logits = decode_labels(task_params, seqs, batch)
return predict_outputs_fn(logits, **extra)
# Only initialize evaluators when they are first needed.
@functools.lru_cache(maxsize=None)
def evaluators():
return eval_common.from_config(
config, {"predict": predict_fn, "validation": validation_fn},
lambda s: write_note(f"Initializing evaluator: {s}...\n{chrono.note}")
)
# Decide how to initialize training. The order is important.
# 1. Always resumes from the existing checkpoint, e.g. resumes a finetune job.
# 2. Resume from a previous checkpoint, e.g. start a cooldown training job.
# 3. Initialize model from something, e,g, start a fine-tuning job.
# 4. Initialize part of the model from something, eg. only encoder or decoder.
# 5. Train from scratch.
resume_ckpt_path = None
if save_ckpt_path and gfile.exists(save_ckpt_path):
resume_ckpt_path = save_ckpt_path
elif config.get("resume"):
resume_ckpt_path = fillin(config.resume)
if resume_ckpt_path:
write_note("Resume training from checkpoint...")
checkpoint = {
"params": params_cpu,
"opt": opt_cpu,
"chrono": chrono.save(),
}
checkpoint_tree = jax.tree_structure(checkpoint)
loaded = u.load_checkpoint(checkpoint_tree, resume_ckpt_path)
# bfloat16 type gets lost when data is saved to disk, so we recover it.
checkpoint = jax.tree_map(u.recover_dtype, loaded)
params_cpu, opt_cpu = checkpoint["params"], checkpoint["opt"]
chrono.load(checkpoint["chrono"])
elif config.get("model_init"):
write_note(f"Initialize model from {config.model_init}...")
params_cpu = model_mod.load(
params_cpu, config.model_init, config.model,
**config.get("model_load", {}))
if jax.process_index() == 0:
parameter_overview.log_parameter_overview(
params_cpu, msg="restored params")
write_note("Kicking off misc stuff...")
first_step = bv_optax.get_count(opt_cpu)
chrono.inform(first_step, total_steps, batch_size, ntrain_img / batch_size)
prof = None # Keeps track of start/stop of profiler state.
write_note(f"Replicating...\n{chrono.note}")
params_repl = flax.jax_utils.replicate(params_cpu)
opt_repl = flax.jax_utils.replicate(opt_cpu)
task_params = flax.jax_utils.replicate(task_params)
update_rngs = flax.jax_utils.replicate(rng)
ckpt_writer = None
write_note(f"First step compilations...\n{chrono.note}")
error = None # For exiting with an error after cleanup. Avoids indentation.
# Using a python integer for step here, because opt.state.step is allocated
# on TPU during replication.
for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter):
mw.step_start(step)
with jax.profiler.StepTraceAnnotation("train_step", step_num=step):
params_repl, opt_repl, loss_value, update_rngs, measurements = (
update_fn(
params_repl,
opt_repl,
batch,
update_rng=update_rngs,
task_params=task_params))
# On the first host, let's always profile a handful of early steps.
if jax.process_index() == 0:
prof = u.startstop_prof(prof, step, first_step, get_steps("log_training"))
# Report training progress
if (u.itstime(step, get_steps("log_training"), total_steps, host=0)
or chrono.warmup and jax.process_index() == 0):
for i, sched_fn_cpu in enumerate(sched_fns_cpu):
mw.measure(f"global_schedule{i if i else ''}", sched_fn_cpu(step - 1))
l = mw.measure("training_loss", loss_value[0])
for name, value in measurements.items():
mw.measure(name, value[0])
chrono.tick(step, mw.measure, write_note)
if not np.isfinite(l):
error = (f"The loss became nan or inf somewhere within steps "
f"[{step - get_steps('log_training')}, {step}]")
break
# Checkpoint saving
if (save_ckpt_path and
(u.itstime(step, get_steps("ckpt", None), total_steps, host=0) or
u.itstime(step, get_steps("keep_ckpt", None), total_steps, host=0))):
chrono.pause(wait_for=(params_repl, opt_repl))
u.checkpointing_timeout(ckpt_writer, config.get("ckpt_timeout", 1))
# We need to transfer the weights over now or else we risk keeping them
# alive while they'll be updated in a future step, creating hard to debug
# memory errors (see (internal link)). Also, takes device 0's params only.
opt_cpu = jax.tree_map(lambda x: np.array(x[0]), opt_repl)
params_cpu = jax.tree_map(lambda x: np.array(x[0]), params_repl)
# Check whether we want to keep a copy of the current checkpoint.
copy_step = None
if u.itstime(step, get_steps("keep_ckpt", None), total_steps):
copy_step = step
ckpt = {"params": params_cpu, "opt": opt_cpu, "chrono": chrono.save()}
ckpt_writer = pool.apply_async(
u.save_checkpoint, (ckpt, save_ckpt_path, copy_step))
chrono.resume()
for (name, evaluator, log_steps, prefix) in evaluators():
if u.itstime(step, log_steps, total_steps, first=log_steps < total_steps,
last=False):
chrono.pause(wait_for=(params_repl, task_params))
write_note(f"{name} evaluation...\n{chrono.note}")
for key, value in evaluator.run(
{"params": params_repl, "task_params": task_params}):
mw.measure(f"{prefix}{key}", value)
chrono.resume()
mw.step_end()
# Always give a chance to stop the profiler, no matter how things ended.
# TODO: can we also do this when dying of an exception like OOM?
if jax.process_index() == 0 and prof is not None:
u.startstop_prof(prof)
# Run final evalution, also used for eval only jobs (when total_steps == 0).
for (name, evaluator, _, prefix) in evaluators():
write_note(f"{name} evaluation...\n{chrono.note}")
for key, value in evaluator.run(
{"params": params_repl, "task_params": task_params}):
mw.measure(f"{prefix}{key}", value)
# Last note needs to happen before the pool's closed =)
if not error:
write_note(f"Done!\n{chrono.note}")
else:
write_note(f"Failed!\n{error}\n{chrono.note}")
pool.close()
pool.join()
mw.close()
# Make sure all hosts stay up until the end of main.
u.sync()
# Before cleanup, as cleanup should only run for successful jobs.
if error is not None:
raise RuntimeError(error)
u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info)
if __name__ == "__main__":
app.run(main)