|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Pre-training ViT on ILSVRC-2012 as in https://arxiv.org/abs/2106.10270
|
|
|
|
This config does NOT include regularization (dropout, stochastic depth), which
|
|
was shown to help with B/32, B/16, L/16 models in the paper (Figure 4).
|
|
|
|
This configuration makes use of the "arg" to get_config to select which model
|
|
to run, so a few examples are given below:
|
|
|
|
Run training of a B/16 model:
|
|
|
|
big_vision.train \
|
|
--config big_vision/configs/vit_i1k.py:variant=B/16 \
|
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'`
|
|
|
|
Run training of a B/32 model with custom aug-strenght and 300ep:
|
|
|
|
big_vision.train \
|
|
--config big_vision/configs/vit_i1k.py:variant=B/32,aug=light1 \
|
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
|
|
--config.total_epochs 300
|
|
"""
|
|
|
|
import big_vision.configs.common as bvcc
|
|
from big_vision.configs.common_fewshot import get_fewshot_lsr
|
|
import ml_collections as mlc
|
|
|
|
MIXUP_DEF = {
|
|
'none': dict(p=0.0, fold_in=None),
|
|
'light1': dict(p=0.0, fold_in=None),
|
|
'light2': dict(p=0.2, fold_in=None),
|
|
'medium1': dict(p=0.2, fold_in=None),
|
|
'medium2': dict(p=0.5, fold_in=None),
|
|
'strong1': dict(p=0.5, fold_in=None),
|
|
'strong2': dict(p=0.8, fold_in=None),
|
|
}
|
|
|
|
RANDAUG_DEF = {
|
|
'none': '',
|
|
'light1': 'randaug(2,0)',
|
|
'light2': 'randaug(2,10)',
|
|
'medium1': 'randaug(2,15)',
|
|
'medium2': 'randaug(2,15)',
|
|
'strong1': 'randaug(2,20)',
|
|
'strong2': 'randaug(2,20)',
|
|
}
|
|
|
|
|
|
def get_config(arg=None):
|
|
"""Config for training."""
|
|
arg = bvcc.parse_arg(arg, variant='B/16', runlocal=False, aug='')
|
|
config = mlc.ConfigDict()
|
|
|
|
config.seed = 0
|
|
config.total_epochs = 300
|
|
config.num_classes = 1000
|
|
config.loss = 'sigmoid_xent'
|
|
config.init_head_bias = -6.9
|
|
|
|
|
|
|
|
|
|
aug_setting = arg.aug or {
|
|
'Ti/16': 'light1',
|
|
'S/32': 'medium1',
|
|
'S/16': 'medium2',
|
|
'B/32': 'medium2',
|
|
'B/16': 'medium2',
|
|
'L/16': 'medium2',
|
|
}[arg.variant]
|
|
|
|
config.input = dict()
|
|
config.input.data = dict(
|
|
name='imagenet2012',
|
|
split='train[:99%]',
|
|
)
|
|
config.input.batch_size = 4096
|
|
config.input.cache = 'raw_data' if arg.runlocal else 'none'
|
|
config.input.shuffle_buffer_size = 250_000
|
|
|
|
pp_common = (
|
|
'|value_range(-1, 1)'
|
|
'|onehot(1000, key="{lbl}", key_result="labels")'
|
|
'|keep("image", "labels")'
|
|
)
|
|
config.input.pp = (
|
|
'decode_jpeg_and_inception_crop(224)|flip_lr|' +
|
|
RANDAUG_DEF[aug_setting] +
|
|
pp_common.format(lbl='label')
|
|
)
|
|
pp_eval = 'decode|resize_small(256)|central_crop(224)' + pp_common
|
|
|
|
|
|
config.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'archive.randaug']
|
|
|
|
|
|
|
|
|
|
config.input.prefetch = 8
|
|
config.prefetch_to_device = 4
|
|
|
|
config.log_training_steps = 50
|
|
config.ckpt_steps = 1000
|
|
|
|
|
|
config.model_name = 'vit'
|
|
config.model = dict(
|
|
variant=arg.variant,
|
|
rep_size=True,
|
|
pool_type='tok',
|
|
)
|
|
|
|
|
|
config.grad_clip_norm = 1.0
|
|
config.optax_name = 'scale_by_adam'
|
|
config.optax = dict(mu_dtype='bfloat16')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.lr = 0.001
|
|
config.wd = 0.0001
|
|
config.schedule = dict(warmup_steps=10_000, decay_type='cosine')
|
|
|
|
config.mixup = MIXUP_DEF[aug_setting]
|
|
|
|
|
|
def get_eval(split, dataset='imagenet2012'):
|
|
return dict(
|
|
type='classification',
|
|
data=dict(name=dataset, split=split),
|
|
pp_fn=pp_eval.format(lbl='label'),
|
|
loss_name=config.loss,
|
|
log_steps=2500,
|
|
cache='final' if arg.runlocal else 'none',
|
|
)
|
|
config.evals = {}
|
|
config.evals.train = get_eval('train[:2%]')
|
|
config.evals.minival = get_eval('train[99%:]')
|
|
config.evals.val = get_eval('validation')
|
|
config.evals.v2 = get_eval('test', dataset='imagenet_v2')
|
|
config.evals.real = get_eval('validation', dataset='imagenet2012_real')
|
|
config.evals.real.pp_fn = pp_eval.format(lbl='real_label')
|
|
|
|
config.fewshot = get_fewshot_lsr(runlocal=arg.runlocal)
|
|
config.fewshot.log_steps = 10_000
|
|
|
|
|
|
if arg.runlocal:
|
|
config.input.shuffle_buffer_size = 10
|
|
config.input.batch_size = 8
|
|
config.input.cache_raw = False
|
|
config.evals.train.data.split = 'train[:16]'
|
|
config.evals.minival.data.split = 'train[:16]'
|
|
config.evals.val.data.split = 'validation[:16]'
|
|
config.evals.v2.data.split = 'test[:16]'
|
|
config.evals.real.data.split = 'validation[:16]'
|
|
|
|
return config |