|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Train Generative Infinite Vocabulary Transformer (GIVT) on ImageNet.
|
|
|
|
Example launch command (local; see main README for launching on TPU servers):
|
|
|
|
python -m big_vision.trainers.proj.givt.generative \
|
|
--config big_vision/configs/proj/givt/givt_imagenet2012.py \
|
|
--workdir gs://$GS_BUCKET_NAME/big_vision/`date '+%m-%d_%H%M'`
|
|
|
|
Add the suffix `:key1=value1,key2=value2,...` to the config path in the launch
|
|
command to modify the the config with the arguments below. For example:
|
|
`--config big_vision/configs/proj/givt/givt_imagenet_2012.py:model_size=large`
|
|
"""
|
|
|
|
import big_vision.configs.common as bvcc
|
|
import ml_collections
|
|
|
|
|
|
RES = 256
|
|
PATCH_SIZE = 16
|
|
|
|
GIVT_MODELS = {
|
|
'base': dict(num_decoder_layers=12, num_heads=12, mlp_dim=3072, emb_dim=768, dec_dropout_rate=0.1),
|
|
'default': dict(num_decoder_layers=24, num_heads=16, mlp_dim=4096, emb_dim=1024, dec_dropout_rate=0.2),
|
|
'large': dict(num_decoder_layers=48, num_heads=16, mlp_dim=8192, emb_dim=1536, dec_dropout_rate=0.3)
|
|
}
|
|
|
|
|
|
def get_config(arg=None):
|
|
"""A config for training a simple VAE on imagenet2012."""
|
|
arg = bvcc.parse_arg(arg, res=RES, patch_size=PATCH_SIZE, style='ar',
|
|
model_size='default', runlocal=False, singlehost=False,
|
|
adaptor=False)
|
|
config = ml_collections.ConfigDict()
|
|
|
|
config.input = {}
|
|
|
|
|
|
|
|
|
|
config.input.data = dict(name='imagenette', split='train')
|
|
|
|
config.input.batch_size = 8 * 1024 if not arg.runlocal else 8
|
|
config.input.shuffle_buffer_size = 25_000 if not arg.runlocal else 10
|
|
|
|
config.total_epochs = 500
|
|
|
|
config.input.pp = (
|
|
f'decode_jpeg_and_inception_crop({arg.res},'
|
|
f'area_min=80, area_max=100, ratio_min=1.0, ratio_max=1.0,'
|
|
f'method="bicubic", antialias=True)'
|
|
f'|flip_lr'
|
|
f'|value_range(-1, 1, key="image")'
|
|
f'|copy("label", "labels")'
|
|
f'|keep("image", "labels")')
|
|
|
|
pp_eval = (
|
|
f'decode'
|
|
f'|resize_small({arg.res}, inkey="image", outkey="image",'
|
|
f'method="bicubic", antialias=True)'
|
|
f'|central_crop({arg.res})'
|
|
f'|value_range(-1, 1, key="image")'
|
|
f'|copy("label", "labels")'
|
|
f'|keep("image", "labels")')
|
|
|
|
config.log_training_steps = 50
|
|
config.ckpt_steps = 1000
|
|
config.keep_ckpt_steps = None
|
|
|
|
|
|
config.ar_generation_config = ml_collections.ConfigDict()
|
|
config.ar_generation_config.temp = 0.95
|
|
config.ar_generation_config.temp_probs = 1.0
|
|
config.ar_generation_config.beam_size = 1
|
|
config.ar_generation_config.fan_size = 1
|
|
config.ar_generation_config.rand_top_k = False
|
|
config.ar_generation_config.rand_top_k_temp = 1.0
|
|
config.ar_generation_config.cfg_inference_weight = 0.4
|
|
|
|
|
|
config.masked_generation_config = ml_collections.ConfigDict()
|
|
config.masked_generation_config.choice_temperature = 35.0
|
|
config.masked_generation_config.ordering = 'maskgit'
|
|
config.masked_generation_config.cfg_inference_weight = 0.0
|
|
config.masked_generation_config.schedule = 'cosine'
|
|
|
|
|
|
config.eval_only = False
|
|
|
|
|
|
config.vae = {}
|
|
config.vae.model = ml_collections.ConfigDict()
|
|
config.vae.model.code_len = (arg.res // arg.patch_size) ** 2
|
|
config.vae.model_name = 'proj.givt.cnn'
|
|
config.vae.model.codeword_dim = 16
|
|
config.vae.model.filters = 128
|
|
config.vae.model.num_res_blocks = 2
|
|
config.vae.model.channel_multipliers = (1, 1, 2, 2, 4)
|
|
config.vae.model.conv_downsample = False
|
|
config.vae.model.activation_fn = 'swish'
|
|
config.vae.model.norm_type = 'GN'
|
|
if arg.model_size == 'large':
|
|
config.vae.model_init = 'gs://big_vision/givt/vae_imagenet_2012_beta_1e-5_params'
|
|
else:
|
|
config.vae.model_init = 'gs://big_vision/givt/vae_imagenet_2012_beta_5e-5_params'
|
|
config.vae.model.malib_ckpt = True
|
|
config.vae.model_load = {}
|
|
config.vae.model_load.malib_ckpt = config.vae.model.malib_ckpt
|
|
config.vae.model_load.use_ema_params = True
|
|
|
|
|
|
config.model_name = 'proj.givt.givt'
|
|
config.model_init = ''
|
|
assert arg.model_size in GIVT_MODELS, f'Unknown model size: {arg.model_size}'
|
|
config.model = ml_collections.ConfigDict(GIVT_MODELS[arg.model_size])
|
|
config.model.num_layers = 0
|
|
config.model.num_labels = 1000
|
|
config.model.seq_len = config.vae.model.code_len
|
|
config.model.out_dim = config.vae.model.codeword_dim
|
|
config.model.num_mixtures = 16
|
|
config.model.posemb_type = 'learn'
|
|
config.model.scale_tol = 1e-6
|
|
config.model.style = arg.style
|
|
config.model.min_masking_rate_training = 0.3
|
|
config.model.mask_style = 'concat'
|
|
config.model.drop_labels_probability = 0.1
|
|
config.model.fix_square_plus = True
|
|
config.model.per_channel_mixtures = False
|
|
config.model_init = ''
|
|
|
|
config.model.scan = True
|
|
config.model.remat_policy = 'nothing_saveable'
|
|
|
|
|
|
config.adaptor_name = 'proj.givt.adaptor' if arg.adaptor else ''
|
|
config.adaptor = {}
|
|
config.adaptor.model = ml_collections.ConfigDict()
|
|
config.adaptor.model.num_blocks = 8
|
|
config.adaptor.model.num_channels_bottleneck = 4 * config.model.out_dim
|
|
|
|
config.optax_name = 'scale_by_adam'
|
|
config.optax = dict(b2=0.95)
|
|
config.grad_clip_norm = 1.0
|
|
|
|
|
|
config.sharding_strategy = [('.*', 'fsdp(axis="data")')]
|
|
config.sharding_rules = [('act_batch', ('data',))]
|
|
|
|
|
|
config.lr = 0.001
|
|
config.wd = 0.0001
|
|
config.schedule = dict(decay_type='cosine', warmup_percent=0.1)
|
|
|
|
|
|
if arg.style == 'masked':
|
|
config.model.dec_dropout_rate = 0.4
|
|
config.wd = 0.0
|
|
if arg.res == 512:
|
|
config.masked_generation_config.choice_temperature = 140
|
|
|
|
elif arg.res == 512 and arg.model_size == 'large':
|
|
config.model.dec_dropout_rate = 0.1
|
|
|
|
config.vae.model.code_len //= 2
|
|
config.vae.model.pixel_shuffle_patch_size = (1, 2)
|
|
config.model.seq_len //= 2
|
|
config.model.out_dim = config.vae.model.codeword_dim * 2
|
|
config.model.num_mixtures = 32
|
|
config.adaptor.model.num_channels_bottleneck = 8 * config.model.out_dim
|
|
config.adaptor.model.pixel_shuffle_patch_size = (1, 2)
|
|
|
|
config.ar_generation_config.temp = 0.9
|
|
config.ar_generation_config.cfg_inference_weight = 0.9
|
|
|
|
|
|
config.evals = {}
|
|
config.evals.val = ml_collections.ConfigDict()
|
|
config.evals.val.type = 'mean'
|
|
config.evals.val.pred = 'validation'
|
|
config.evals.val.data = {**config.input.data}
|
|
config.evals.val.data.split = f'train[:{4096 if not arg.runlocal else 8}]'
|
|
config.evals.val.pp_fn = pp_eval
|
|
config.evals.val.log_steps = 1_000 if not arg.runlocal else 20
|
|
|
|
config.evals.save_pred_sampling = dict(
|
|
type='proj.givt.save_predictions',
|
|
pp_fn=pp_eval,
|
|
log_steps=10_000,
|
|
pred='sample',
|
|
batch_size=512,
|
|
data=dict(name=config.input.data.name, split='validation[:512]'),
|
|
outfile='inference_sampled.npz',
|
|
)
|
|
|
|
config.seed = 0
|
|
|
|
config.ckpt_timeout = 30
|
|
|
|
if arg.runlocal:
|
|
config.input.batch_size = 4
|
|
config.input.shuffle_buffer_size = 10
|
|
config.log_training_steps = 5
|
|
config.model.num_decoder_layers = 2
|
|
|
|
config.evals.val.data.split = 'validation[:16]'
|
|
config.evals.val.log_steps = 20
|
|
|
|
return config
|
|
|