|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Pre-training flexible-seqlen ViT on ImageNet-21k following (internal link).
|
|
|
|
This config is for reference, we never ran it on public infrastructure.
|
|
|
|
big_vision.trainers.proj.flexi.train \
|
|
--config big_vision/configs/proj/flexivit/i21k_sup.py \
|
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
|
|
--config.total_epochs 90
|
|
"""
|
|
|
|
import big_vision.configs.common as bvcc
|
|
|
|
|
|
def get_config(arg=None):
|
|
"""Config for training."""
|
|
|
|
|
|
c = bvcc.parse_arg(arg, runlocal=False, res=240)
|
|
|
|
c.seed = 0
|
|
c.total_epochs = 90
|
|
c.num_classes = 21843
|
|
c.init_head_bias = -10.0
|
|
c.loss = 'sigmoid_xent'
|
|
|
|
c.input = dict()
|
|
c.input.data = dict(
|
|
name='imagenet21k',
|
|
split='full[51200:]',
|
|
)
|
|
c.input.batch_size = 4096 if not c.runlocal else 8
|
|
c.input.shuffle_buffer_size = 250_000 if not c.runlocal else 25
|
|
|
|
pp_common = '|value_range(-1, 1)|onehot({onehot_args})|keep("image", "labels")'
|
|
pp_common_i21k = pp_common.format(onehot_args=f'{c.num_classes}')
|
|
pp_common_i1k = pp_common.format(onehot_args='1000, key="{lbl}", key_result="labels"')
|
|
c.input.pp = f'decode_jpeg_and_inception_crop({c.res})|flip_lr|randaug(2,10)' + pp_common_i21k
|
|
def pp_eval(res=c.res):
|
|
return f'decode|resize_small({res//7*8})|central_crop({res})'
|
|
|
|
|
|
c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'archive.randaug']
|
|
|
|
|
|
|
|
|
|
c.input.prefetch = 8
|
|
c.prefetch_to_device = 4
|
|
|
|
c.log_training_steps = 50
|
|
c.ckpt_steps = 1000
|
|
|
|
|
|
c.model_name = 'proj.flexi.vit'
|
|
c.model = dict(
|
|
variant='B',
|
|
pool_type='tok',
|
|
posemb='learn',
|
|
|
|
patch_size=(8, 8),
|
|
posemb_size=(7, 7),
|
|
seqhw=None,
|
|
)
|
|
|
|
|
|
c.flexi = dict()
|
|
c.flexi.seqhw = dict(
|
|
|
|
|
|
v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30),
|
|
|
|
p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
|
|
)
|
|
|
|
|
|
c.optax_name = 'scale_by_adam'
|
|
c.optax = dict(mu_dtype='bfloat16')
|
|
c.grad_clip_norm = 1.0
|
|
|
|
c.lr = 0.001
|
|
c.wd = 0.0001
|
|
c.schedule = dict(warmup_steps=10_000, decay_type='cosine')
|
|
|
|
c.mixup = dict(p=0.2, fold_in=None)
|
|
|
|
def mksplit(split):
|
|
if c.runlocal:
|
|
return split.split('[')[0] + '[:16]'
|
|
return split
|
|
|
|
|
|
def eval_i21k(s, split):
|
|
return dict(
|
|
type='classification',
|
|
pred=f'predict_seqhw={s}',
|
|
data={**c.input.data, 'split': mksplit(split)},
|
|
pp_fn=pp_eval() + pp_common_i21k,
|
|
loss_name=c.loss,
|
|
log_steps=5000,
|
|
)
|
|
|
|
c.evals = {}
|
|
for s in c.flexi.seqhw.v:
|
|
c.evals[f'test{s:02d}'] = eval_i21k(s, 'full[:25_600]')
|
|
c.evals[f'val{s:02d}'] = eval_i21k(s, 'full[25_600:51_200]')
|
|
c.evals[f'train{s:02d}'] = eval_i21k(s, 'full[51_200:76_800]')
|
|
|
|
|
|
def eval_i1k(s, dataset, split, lblmap):
|
|
return dict(
|
|
type='classification_with_labelmap',
|
|
pred=f'predict_seqhw={s}',
|
|
data=dict(name=dataset, split=mksplit(split)),
|
|
pp_fn=pp_eval() + pp_common_i1k.format(lbl='label'),
|
|
loss_name=c.loss,
|
|
log_steps=5000,
|
|
label_mapping=lblmap,
|
|
)
|
|
for s in c.flexi.seqhw.v:
|
|
c.evals[f'i1k_val{s:02d}'] = eval_i1k(s, 'imagenet2012', 'validation', 'i1k_i21k')
|
|
c.evals[f'i1k_v2{s:02d}'] = eval_i1k(s, 'imagenet_v2', 'test', 'i1k_i21k')
|
|
c.evals[f'i1k_a{s:02d}'] = eval_i1k(s, 'imagenet_a', 'test', 'i1ka_i21k')
|
|
c.evals[f'i1k_r{s:02d}'] = eval_i1k(s, 'imagenet_r', 'test', 'i1kr_i21k')
|
|
c.evals[f'i1k_real{s:02d}'] = eval_i1k(s, 'imagenet2012_real', 'validation', 'i1k_i21k')
|
|
c.evals[f'i1k_real{s:02d}'].pp_fn = pp_eval() + pp_common_i1k.format(lbl='real_label')
|
|
|
|
|
|
|
|
return c
|
|
|