|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""A config for training MLP-Mixer-B/16 model on ILSVRC-2012 ("ImageNet-1k").
|
|
|
|
Achieves 76.3% top-1 accuracy on the test split in 2h11m on TPU v3-128
|
|
with 300 epochs. A shorter 60 epochs run is expected to get to 70.5% in 27m.
|
|
|
|
big_vision.train \
|
|
--config big_vision/configs/mlp_mixer_i1k.py \
|
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
|
|
"""
|
|
|
|
from big_vision.configs.common_fewshot import get_fewshot_lsr
|
|
import ml_collections as mlc
|
|
|
|
|
|
def get_config(mode=None):
|
|
"""Config for training Mixer on i1k."""
|
|
config = mlc.ConfigDict()
|
|
|
|
config.seed = 0
|
|
config.total_epochs = 300
|
|
config.num_classes = 1000
|
|
config.loss = 'sigmoid_xent'
|
|
config.init_head_bias = -6.9
|
|
|
|
config.input = dict()
|
|
config.input.data = dict(
|
|
name='imagenet2012',
|
|
split='train[:99%]',
|
|
)
|
|
config.input.batch_size = 4096
|
|
config.input.cache_raw = True
|
|
config.input.shuffle_buffer_size = 250_000
|
|
|
|
config.input.pp = (
|
|
'decode_jpeg_and_inception_crop(224)'
|
|
'|flip_lr'
|
|
'|randaug(2,15)'
|
|
'|value_range(-1, 1)'
|
|
'|onehot(1000, key="label", key_result="labels")'
|
|
'|keep("image", "labels")'
|
|
)
|
|
pp_eval = (
|
|
'decode'
|
|
'|resize_small(256)|central_crop(224)'
|
|
'|value_range(-1, 1)'
|
|
'|onehot(1000, key="{lbl}", key_result="labels")'
|
|
'|keep("image", "labels")'
|
|
)
|
|
|
|
|
|
config.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'archive.randaug']
|
|
|
|
config.log_training_steps = 50
|
|
config.ckpt_steps = 1000
|
|
|
|
config.prefetch_to_device = 2
|
|
|
|
|
|
config.model_name = 'mlp_mixer'
|
|
config.model = dict()
|
|
config.model.variant = 'B/16'
|
|
config.model.stoch_depth = 0.1
|
|
|
|
config.mixup = dict(fold_in=None, p=0.5)
|
|
|
|
|
|
config.optax_name = 'scale_by_adam'
|
|
config.grad_clip_norm = 1.
|
|
|
|
config.lr = 0.001
|
|
config.wd = 1e-4
|
|
config.schedule = dict(
|
|
decay_type='linear',
|
|
warmup_steps=10_000,
|
|
linear_end=1e-5,
|
|
)
|
|
|
|
|
|
def get_eval(split, dataset='imagenet2012'):
|
|
return dict(
|
|
type='classification',
|
|
data=dict(name=dataset, split=split),
|
|
pp_fn=pp_eval.format(lbl='label'),
|
|
loss_name=config.loss,
|
|
log_steps=2500,
|
|
cache_final=mode != 'gpu8',
|
|
)
|
|
config.evals = {}
|
|
config.evals.train = get_eval('train[:2%]')
|
|
config.evals.minival = get_eval('train[99%:]')
|
|
config.evals.val = get_eval('validation')
|
|
config.evals.v2 = get_eval('test', dataset='imagenet_v2')
|
|
config.evals.real = get_eval('validation', dataset='imagenet2012_real')
|
|
config.evals.real.pp_fn = pp_eval.format(lbl='real_label')
|
|
|
|
config.fewshot = get_fewshot_lsr()
|
|
|
|
if mode == 'gpu8':
|
|
config.total_epochs = 60
|
|
config.input.batch_size = 512
|
|
config.input.cache_raw = False
|
|
if mode == 'regression_test':
|
|
config.total_epochs = 60
|
|
|
|
return config
|
|
|