|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Pre-training BiT on ILSVRC-2012 as in https://arxiv.org/abs/1912.11370
|
|
|
|
Run training of a BiT-ResNet-50x1 variant, which takes ~32min on v3-128:
|
|
|
|
big_vision.train \
|
|
--config big_vision/configs/bit_i1k.py \
|
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
|
|
--config.model.depth 50 --config.model.width 1
|
|
"""
|
|
|
|
|
|
import ml_collections as mlc
|
|
|
|
|
|
def get_config(runlocal=False):
|
|
"""Config for training on ImageNet-1k."""
|
|
config = mlc.ConfigDict()
|
|
|
|
config.seed = 0
|
|
config.total_epochs = 90
|
|
config.num_classes = 1000
|
|
config.loss = 'softmax_xent'
|
|
|
|
config.input = dict()
|
|
config.input.data = dict(
|
|
name='imagenet2012',
|
|
split='train[:99%]',
|
|
)
|
|
config.input.batch_size = 4096
|
|
config.input.cache_raw = True
|
|
config.input.shuffle_buffer_size = 250_000
|
|
|
|
pp_common = '|onehot(1000, key="{lbl}", key_result="labels")'
|
|
pp_common += '|value_range(-1, 1)|keep("image", "labels")'
|
|
config.input.pp = 'decode_jpeg_and_inception_crop(224)|flip_lr' + pp_common.format(lbl='label')
|
|
pp_eval = 'decode|resize_small(256)|central_crop(224)' + pp_common
|
|
|
|
config.log_training_steps = 50
|
|
config.ckpt_steps = 1000
|
|
|
|
|
|
config.model_name = 'bit'
|
|
config.model = dict(
|
|
depth=50,
|
|
width=1.0,
|
|
)
|
|
|
|
|
|
config.optax_name = 'big_vision.momentum_hp'
|
|
config.grad_clip_norm = 1.0
|
|
|
|
|
|
config.wd = (1e-4 / 256) * config.input.batch_size
|
|
config.lr = (0.1 / 256) * config.input.batch_size
|
|
config.schedule = dict(decay_type='cosine', warmup_steps=1000)
|
|
|
|
|
|
def get_eval(split, dataset='imagenet2012'):
|
|
return dict(
|
|
type='classification',
|
|
data=dict(name=dataset, split=split),
|
|
pp_fn=pp_eval.format(lbl='label'),
|
|
loss_name=config.loss,
|
|
log_steps=1000,
|
|
cache='final_data',
|
|
)
|
|
config.evals = {}
|
|
config.evals.train = get_eval('train[:2%]')
|
|
config.evals.minival = get_eval('train[99%:]')
|
|
config.evals.val = get_eval('validation')
|
|
config.evals.v2 = get_eval('test', dataset='imagenet_v2')
|
|
config.evals.real = get_eval('validation', dataset='imagenet2012_real')
|
|
config.evals.real.pp_fn = pp_eval.format(lbl='real_label')
|
|
|
|
|
|
|
|
|
|
if runlocal:
|
|
config.input.batch_size = 32
|
|
config.input.cache_raw = False
|
|
config.input.shuffle_buffer_size = 100
|
|
|
|
local_eval = config.evals.val
|
|
config.evals = {'val': local_eval}
|
|
config.evals.val.cache = 'none'
|
|
|
|
return config |