File size: 23,251 Bytes
fa1a600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Training loop for PaliGemma-style VLM."""
# pylint: disable=consider-using-from-import
# pylint: disable=logging-fstring-interpolation

import functools
import importlib
import multiprocessing.pool
import os

from absl import app
from absl import flags
from absl import logging
import big_vision.datasets.core as ds_core
import big_vision.evaluators.common as eval_common
import big_vision.input_pipeline as input_pipeline
import big_vision.optax as bv_optax
import big_vision.sharding as bv_sharding
import big_vision.trainers.proj.paligemma.predict_fns as predict_fns
import big_vision.utils as u
from clu import parameter_overview
import flax
import flax.linen as nn
import jax
from jax.experimental import mesh_utils
from jax.experimental import multihost_utils
from jax.experimental.array_serialization import serialization as array_serial
import jax.numpy as jnp
import ml_collections as mlc
from ml_collections import config_flags
import numpy as np
import optax
import tensorflow as tf

from tensorflow.io import gfile


config_flags.DEFINE_config_file(
    "config", None, "Training configuration.", lock_config=True)

flags.DEFINE_string("workdir", default=None, help="Work unit directory.")
flags.DEFINE_boolean("cleanup", default=False,
                     help="Delete workdir (only) after successful completion.")

# Adds jax flags to the program.
jax.config.parse_flags_with_absl()
# Transfer guard will fail the program whenever that data between a host and
# a device is transferred implicitly. This often catches subtle bugs that
# cause slowdowns and memory fragmentation. Explicit transfers are done
# with jax.device_put and jax.device_get.
jax.config.update("jax_transfer_guard", "disallow")


NamedSharding = jax.sharding.NamedSharding
P = jax.sharding.PartitionSpec


def main(argv):
  del argv

  # This is needed on multihost systems, but crashes on non-TPU single-host.
  if os.environ.get("BV_JAX_INIT"):
    jax.distributed.initialize()

  # Make sure TF does not touch GPUs.
  tf.config.set_visible_devices([], "GPU")

################################################################################
#                                                                              #
#                                Set up logging                                #
#                                                                              #
################################################################################

  # Set up work directory and print welcome message.
  config = flags.FLAGS.config
  workdir = flags.FLAGS.workdir
  logging.info(
      f"\u001b[33mHello from process {jax.process_index()} holding "
      f"{jax.local_device_count()}/{jax.device_count()} devices and "
      f"writing to workdir {workdir}.\u001b[0m")

  save_ckpt_path = None
  if workdir:  # Always create if requested, even if we may not write into it.
    gfile.makedirs(workdir)
    save_ckpt_path = os.path.join(workdir, "checkpoint.bv")

  # The pool is used to perform misc operations such as logging in async way.
  pool = multiprocessing.pool.ThreadPool()

  # Here we register preprocessing ops from modules listed on `pp_modules`.
  for m in config.get("pp_modules", ["ops_general", "ops_image", "ops_text"]):
    importlib.import_module(f"big_vision.pp.{m}")

  # Setup up logging and experiment manager.
  xid, wid = -1, -1
  fillin = lambda s: s
  def info(s, *a):
    logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a)
  def write_note(note):
    if jax.process_index() == 0:
      info("%s", note)

  mw = u.BigVisionMetricWriter(xid, wid, workdir, config)

  # Allow for things like timings as early as possible!
  u.chrono.inform(measure=mw.measure, write_note=write_note)

################################################################################
#                                                                              #
#                                Set up Mesh                                   #
#                                                                              #
################################################################################

  # We rely on jax mesh_utils to organize devices, such that communication
  # speed is the fastest for the last dimension, second fastest for the
  # penultimate dimension, etc.
  config_mesh = config.get("mesh", [("data", jax.device_count())])

  # Sharding rules with the default of doing full data sharding.
  sharding_rules = config.get("sharding_rules", [("act_batch", "data")])

  mesh_axes, mesh_size = tuple(zip(*config_mesh))

  # Because jax.utils do not support `-1` shape size.
  mesh_size = np.array(jax.devices()).reshape(mesh_size).shape

  device_mesh = mesh_utils.create_device_mesh(
      mesh_size, allow_split_physical_axes=config.get(
          "mesh_allow_split_physical_axes", False))

  # Consistent device order is important to ensure correctness of various train
  # loop components, such as input pipeline, update step, evaluators. The
  # order prescribed by the `devices_flat` variable should be used throughout
  # the program.
  devices_flat = device_mesh.flatten()

################################################################################
#                                                                              #
#                                Input Pipeline                                #
#                                                                              #
################################################################################

  write_note("Initializing train dataset...")
  batch_size = config.input.batch_size
  if batch_size % jax.device_count() != 0:
    raise ValueError(f"Batch size ({batch_size}) must "
                     f"be divisible by device number ({jax.device_count()})")
  info("Global batch size %d on %d hosts results in %d local batch size. With "
       "%d dev per host (%d dev total), that's a %d per-device batch size.",
       batch_size, jax.process_count(), batch_size // jax.process_count(),
       jax.local_device_count(), jax.device_count(),
       batch_size // jax.device_count())

  train_ds, ntrain_img = input_pipeline.training(config.input)

  total_steps = u.steps("total", config, ntrain_img, batch_size)
  def get_steps(name, default=ValueError, cfg=config):
    return u.steps(name, cfg, ntrain_img, batch_size, total_steps, default)

  u.chrono.inform(total_steps=total_steps, global_bs=batch_size,
                  steps_per_epoch=ntrain_img / batch_size)

  info("Running for %d steps, that means %f epochs",
       total_steps, total_steps * batch_size / ntrain_img)

  # Start input pipeline as early as possible, this will kick-start filling
  # shuffle buffers and get the first batch in a background thread.
  n_prefetch = config.get("prefetch_to_device", 1)
  train_iter = input_pipeline.start_global(
      train_ds, devices_flat, n_prefetch, warmup=n_prefetch > 0)

  # For mixed data, add per-dataset epoch and examples seen measurements.
  if isinstance(config.input.data.get("name"), str):
    measure_per_dataset_times = lambda step: None  # No-op
  else:
    nexamples = {
        name: ds_core.get(**config.input[name].data).total_examples
        for name in config.input.data
    }
    def measure_per_dataset_times(step):
      total = sum(config.input.data.values())
      for name, w in config.input.data.items():
        w = w / total
        mw.measure(f"examples_seen_{name}", u.chrono.accum_examples_seen * w)
        mw.measure(f"epoch_{name}", step * batch_size * w / nexamples[name])

################################################################################
#                                                                              #
#                           Create Model & Optimizer                           #
#                                                                              #
################################################################################

  write_note(f"Initializing {config.model_name} model...")
  model_mod = importlib.import_module(f"big_vision.models.{config.model_name}")
  model = model_mod.Model(**mlc.FrozenConfigDict(config.get("model", {})))

  def init(rng, partial_params=None):
    batch = jax.tree.map(lambda x: jnp.zeros(x.shape, x.dtype.as_numpy_dtype),
                         train_ds.element_spec)
    _, variables = model.apply(  # flax init is just apply with mutable.
        {"params": partial_params or {}},
        batch["image"], batch["text"][:, :-1], batch["mask_ar"][:, :-1],
        rngs={"params": rng, "dropout": rng},
        mutable=["params"])
    return flax.core.unfreeze(variables["params"])

  # This seed makes the Jax part of things (like model init) deterministic.
  # However, full training still won't be deterministic, for example due to the
  # tf.data pipeline not being deterministic even if we would set TF seed.
  # See (internal link) for a fun read on what it takes.
  rng = jax.random.PRNGKey(u.put_cpu(config.get("seed", 0)))

  write_note("Inferring parameter shapes...")
  rng, rng_init = jax.random.split(rng)
  params_shape = jax.eval_shape(init, rng_init)
  params_shape = nn.unbox(params_shape)

  write_note("Inferring optimizer state shapes...")
  tx, sched_fns = bv_optax.make(config, params_shape, sched_kw=dict(
      total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img))
  opt_shape = jax.eval_shape(tx.init, params_shape)
  # We jit this, such that the arrays are created on the CPU, not device[0].
  sched_fns_cpu = [u.jit_cpu()(sched_fn) for sched_fn in sched_fns]

  if jax.process_index() == 0:
    num_params = sum(np.prod(p.shape) for p in jax.tree.leaves(params_shape))
    mw.measure("num_params", num_params)

################################################################################
#                                                                              #
#                    Init and/or load model onto devices                       #
#                                                                              #
################################################################################

  write_note("Creating device mesh...")
  mesh = jax.sharding.Mesh(device_mesh, mesh_axes)
  repl_sharding = jax.sharding.NamedSharding(mesh, P())

  write_note("Inferring shardings...")
  train_state_shape = {"params": params_shape, "opt": opt_shape}

  strategy = config.get("sharding_strategy", [(".*", "replicate")])
  train_state_sharding = bv_sharding.infer_sharding(
      train_state_shape, strategy=strategy, mesh=mesh)

  # Decide how to initialize training. The order is important.
  # 1. Always resumes from the existing checkpoint, e.g. resumes a finetune job.
  # 2. Resume from a previous checkpoint, e.g. start a cooldown training job.
  # 3. Initialize model from scratch or from something, e.g. fine-tuning job.
  resume_ckpt_path = None
  if save_ckpt_path and gfile.exists(f"{save_ckpt_path}-LAST"):
    resume_ckpt_path = save_ckpt_path
  elif config.get("resume"):
    resume_ckpt_path = fillin(config.resume)

  if resume_ckpt_path:
    write_note(f"Resuming training from checkpoint {resume_ckpt_path}...")
    shardings = {
        **train_state_sharding,
        "chrono": jax.tree.map(lambda _: repl_sharding, u.chrono.save()),
    }
    loaded = u.load_checkpoint_ts(
        resume_ckpt_path, tree=shardings, shardings=shardings)
    train_state = {key: loaded[key] for key in train_state_sharding.keys()}
    u.chrono.load(jax.device_get(loaded["chrono"]))
    del loaded
  else:
    write_note(
        f"Initialize model from {config.get('model_init') or 'scratch'}...")

    # To avoid holding two copies of parameters we first call `model.load`
    # and then initialize the missing variables.
    if config.get("model_init"):
      # We call `model.load` with params shape, so it can know all model params
      # including their shapes and dtypes (also shardings once wired).
      params = model_mod.load(
          params_shape, config.model_init, config.get("model"),
          **config.get("model_load", {}))

      # Keep only params loaded by `model.load` and shard them into devices.
      mask = jax.tree.map(
          lambda x: not isinstance(x, jax.ShapeDtypeStruct), params)
      params = u.reshard(u.tree_filter(params, mask),
                         u.tree_filter(train_state_sharding["params"], mask))

      parameter_overview.log_parameter_overview(
          params, msg="Restored params",
          include_stats="global", jax_logging_process=0)
    else:
      params = {}

    # Init will initialize any missing params.
    rng_init = u.reshard(rng_init, repl_sharding)
    params = jax.jit(
        init, donate_argnums=1, out_shardings=train_state_sharding["params"])(
            rng_init, params)
    params = nn.unbox(params)

    # Initialize optimizer and construct train_state.
    opt = jax.jit(tx.init, out_shardings=train_state_sharding["opt"])(params)
    train_state = {"params": params, "opt": opt}
    del params, opt  # Delete to avoid memory leak or accidental reuse.

  parameter_overview.log_parameter_overview(
      train_state["params"], msg="Parameter overview",
      include_stats="global", jax_logging_process=0)

  rng, rng_loop = jax.random.split(rng, 2)
  rng_loop = u.reshard(rng_loop, repl_sharding)
  del rng, rng_init  # not used anymore, so delete it.

################################################################################
#                                                                              #
#                                 Update Step                                  #
#                                                                              #
################################################################################

  @functools.partial(

      jax.jit,

      donate_argnums=(0,),

      out_shardings=(train_state_sharding, repl_sharding))
  def update_fn(train_state, rng, batch):
    """Update step."""

    step_count = bv_optax.get_count(train_state["opt"], jittable=True)
    rng = jax.random.fold_in(rng, step_count)
    assert "mixup" not in config, "Mixup is not supported for SigLIP."

    # Get device-specific loss rng.
    _, rng_model = jax.random.split(rng, 2)

    imgs, txts, mask_ar = batch["image"], batch["text"], batch["mask_ar"]

    def loss_fn(params):
      text_logits, _ = model.apply(
          {"params": params}, imgs, txts[:, :-1], mask_ar[:, :-1],
          train=True, rngs={"dropout": rng_model})

      logp = jax.nn.log_softmax(text_logits, axis=-1)
      targets = jax.nn.one_hot(txts[:, 1:], text_logits.shape[-1])
      off_value = config.get("label_smoothing", 0.0)
      if off_value > 0:
        denom = text_logits.shape[-1] - 1
        targets = jnp.where(
            targets == 1.0, 1.0 - off_value, off_value / denom)

      # Sum across vocab.
      token_pplx = jnp.sum(logp * targets, axis=-1)

      # Shift by one since the loss is on the _next_ token.
      mask_loss = batch["mask_loss"][:, 1:]
      token_pplx = token_pplx * mask_loss
      pplx = -jnp.sum(token_pplx, axis=-1)
      pplx /= jnp.clip(jnp.sum(mask_loss, axis=-1), 1)

      # In this dict the (outer) reduction is along batch.
      measurements = dict(
          training_loss=jnp.mean(pplx),
          avg_sup_seqlen=jnp.mean(jnp.sum(mask_loss, axis=-1)),
          max_sup_seqlen=jnp.max(jnp.sum(mask_loss, axis=-1)),
      )

      return measurements["training_loss"], measurements

    params, opt = train_state["params"], train_state["opt"]
    (_, measurements), grads = jax.value_and_grad(loss_fn, has_aux=True)(params)
    updates, opt = tx.update(grads, opt, params)
    params = optax.apply_updates(params, updates)

    gs = jax.tree.leaves(bv_optax.replace_frozen(config.schedule, grads, 0.))
    measurements["l2_grads"] = jnp.sqrt(sum([jnp.sum(g * g) for g in gs]))
    ps = jax.tree.leaves(params)
    measurements["l2_params"] = jnp.sqrt(sum([jnp.sum(p * p) for p in ps]))
    us = jax.tree.leaves(updates)
    measurements["l2_updates"] = jnp.sqrt(sum([jnp.sum(u * u) for u in us]))

    return {"params": params, "opt": opt}, measurements

################################################################################
#                                                                              #
#                                 Setup Evals                                  #
#                                                                              #
################################################################################

  # Only initialize evaluators when they are first needed.
  @functools.lru_cache(maxsize=None)
  def evaluators():
    return eval_common.from_config(
        config,
        predict_fns.get_all(model),
        lambda s: write_note(f"Init evaluator: {s}…\n{u.chrono.note}"),
        lambda key, cfg: get_steps(key, default=None, cfg=cfg),
        devices_flat,
    )

  # At this point we need to know the current step to see whether to run evals.
  write_note("Inferring the first step number...")
  first_step_device = bv_optax.get_count(train_state["opt"], jittable=True)
  first_step = int(jax.device_get(first_step_device))
  u.chrono.inform(first_step=first_step)

  # Note that training can be pre-empted during the final evaluation (i.e.
  # just after the final checkpoint has been written to disc), in which case we
  # want to run the evals.
  if first_step in (total_steps, 0):
    write_note("Running initial or final evals...")
    mw.step_start(first_step)
    for (name, evaluator, _, prefix) in evaluators():
      if config.evals[name].get("skip_first") and first_step != total_steps:
        continue
      write_note(f"{name} evaluation...\n{u.chrono.note}")
      with u.chrono.log_timing(f"z/secs/eval/{name}"):
        with mesh, nn.logical_axis_rules(sharding_rules):
          for key, value in evaluator.run(train_state):
            mw.measure(f"{prefix}{key}", value)

################################################################################
#                                                                              #
#                                  Train Loop                                  #
#                                                                              #
################################################################################

  prof = None  # Keeps track of start/stop of profiler state.
  ckpt_mngr = None

  write_note("Starting training loop, compiling the first step...")
  for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter):
    mw.step_start(step)

    with jax.profiler.StepTraceAnnotation("train_step", step_num=step):
      with u.chrono.log_timing("z/secs/update0", noop=step > first_step + 1):
        with mesh, nn.logical_axis_rules(sharding_rules):
          train_state, measurements = update_fn(train_state, rng_loop, batch)

    # On the first host, let's always profile a handful of early steps.
    if jax.process_index() == 0:
      prof = u.startstop_prof(prof, step, first_step, get_steps("log_training"))

    # Report training progress
    if (u.itstime(step, get_steps("log_training"), total_steps, host=0)
        or u.chrono.warmup and jax.process_index() == 0):
      for i, sched_fn_cpu in enumerate(sched_fns_cpu):
        mw.measure(f"global_schedule{i if i else ''}",
                   sched_fn_cpu(u.put_cpu(step - 1)))
      measurements = jax.device_get(measurements)
      for name, value in measurements.items():
        mw.measure(name, value)
      u.chrono.tick(step)
      measure_per_dataset_times(step)

      for k in ("training_loss", "l2_params", "l2_grads"):
        if not np.isfinite(measurements.get(k, 0.0)):
          raise RuntimeError(f"{k} became nan or inf somewhere within steps "
                             f"[{step - get_steps('log_training')}, {step}]")

    # Checkpoint saving
    keep_last = total_steps if get_steps("ckpt", None) else None
    keep_ckpt_steps = get_steps("keep_ckpt", None) or keep_last
    if save_ckpt_path and (
        (keep := u.itstime(step, keep_ckpt_steps, total_steps, first=False))
        or u.itstime(step, get_steps("ckpt", None), total_steps, first=True)
    ):
      u.chrono.pause(wait_for=train_state)

      # Copy because we add extra stuff to the checkpoint.
      ckpt = {**train_state}

      # To save chrono state correctly and safely in a multihost setup, we
      # broadcast the state to all hosts and convert it to a global array.
      with jax.transfer_guard("allow"):
        chrono_ckpt = multihost_utils.broadcast_one_to_all(u.chrono.save())
      chrono_shardings = jax.tree.map(lambda _: repl_sharding, chrono_ckpt)
      ckpt = ckpt | {"chrono": u.reshard(chrono_ckpt, chrono_shardings)}

      ckpt_mngr = ckpt_mngr or array_serial.GlobalAsyncCheckpointManager()
      u.save_checkpoint_ts(ckpt_mngr, ckpt, save_ckpt_path, step, keep)
      u.chrono.resume()

    for (name, evaluator, log_steps, prefix) in evaluators():
      if u.itstime(step, log_steps, total_steps, first=False, last=True):
        u.chrono.pause(wait_for=train_state)
        u.chrono.tick(step)  # Record things like epoch number, core hours etc.
        write_note(f"{name} evaluation...\n{u.chrono.note}")
        with u.chrono.log_timing(f"z/secs/eval/{name}"):
          with mesh, nn.logical_axis_rules(sharding_rules):
            for key, value in evaluator.run(train_state):
              mw.measure(f"{prefix}{key}", jax.device_get(value))
        u.chrono.resume()
    mw.step_end()

  # Always give a chance to stop the profiler, no matter how things ended.
  # TODO: can we also do this when dying of an exception like OOM?
  if jax.process_index() == 0 and prof is not None:
    u.startstop_prof(prof)

  # Last note needs to happen before the pool's closed =)
  write_note(f"Done!\n{u.chrono.note}")

  pool.close()
  pool.join()
  mw.close()
  if ckpt_mngr:
    ckpt_mngr.wait_until_finished()

  # Make sure all hosts stay up until the end of main.
  u.sync()

  u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info)


if __name__ == "__main__":
  app.run(main)