File size: 12,259 Bytes
fa1a600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Image encoder + AR-decoder LLM."""

import importlib
from typing import Any, Optional

import flax.linen as nn
import jax
import jax.numpy as jnp

ConfigDict = Any


def make_attn_mask(input_mask, mask_ar):
  """Returns attention mask bool[B, N, N] to use in transformer.



  Tokens can attend to valid inputs tokens which have a cumulative mask_ar

  smaller or equal to theirs. This way `mask_ar` int[B, N] can be used to

  setup several types of attention, for example:



    [[1 1 1 1 1 1]]: pure causal attention.



    [[0 0 0 1 1 1]]: prefix-lm attention. The first 3 tokens can attend between

        themselves and the last 3 tokens have a causal attention. The first

        entry could also be a 1 without changing behaviour.



    [[1 0 1 0 1 0 0 1 0 0]]: causal attention between 4 blocks. Tokens of a

        block can attend all previous blocks and all tokens on the same block.



  Args:

    input_mask: bool[B, N] true if its part of the input, false if padding.

    mask_ar: int32[B, N] mask that's 1 where previous tokens cannot depend on

      it and 0 where it shares the same attention mask as the previous token.

  """
  cumsum = jnp.cumsum(mask_ar, axis=1)
  attn_mask = (cumsum[:, None, :] <= cumsum[:, :, None])
  valid_mask = (input_mask[:, None, :] * input_mask[:, :, None])
  return jnp.logical_and(attn_mask, valid_mask)


class Model(nn.Module):
  """Two towers transformer."""
  img_model: str = "vit"
  img: Optional[ConfigDict] = None
  llm_model: str = "proj.paligemma.gemma_bv"
  llm: Optional[ConfigDict] = None

  def setup(self):
    self._llm = importlib.import_module(
        f"big_vision.models.{self.llm_model}"
    ).Model(**(self.llm or {}), name="llm")

    img_config = {"num_classes": self._llm.embdim, **(self.img or {})}
    self._img_model = importlib.import_module(
        f"big_vision.models.{self.img_model}"
    ).Model(**img_config, name="img")

  def embed_image(self, image, train=False):
    out = {}

    # if we have video, fold frame dimension into the batch dimension
    image_shape = image.shape
    if len(image_shape) == 5:  # video frames
      image = jnp.reshape(image, (-1, *image.shape[-3:]))

    # Do we want to normalize? are they huge?
    zimg, out_img = self._img_model(image, train=train)

    if len(image_shape) == 5:  # concatenate tokens from all video frames
      zimg = jnp.reshape(zimg, (image_shape[0], -1, zimg.shape[-1]))

    out["img/zimg"] = zimg
    for k, v in out_img.items():
      out[f"img/{k}"] = v
    return zimg, out

  def embed_text(self, tokens, train=False):
    out = {}
    ztxt = out["llm/ztxt"] = self._llm.embed_tokens(tokens, train=train)
    return ztxt, out

  def embed_image_and_text(self, image, text, *,

                           input_mask=None, mask_ar=None, train=False):
    """Concats image/text into a sequence of embeded tokens to pass to `llm`.



    Args:

      image: float[B, H, W, 3] image to be embedded by the `img` model and used

        as prefix to the sequence passed to the `llm` model.

      text: int32[B, T] token sequence to embedded by the `llm`.

      input_mask: bool[B, T] true if the text token is a valid token and false

        if its a token to pad the sequence. Defaults to all being input tokens.

      mask_ar: int32[B, T] mask that's 1 where `text` should be attended to

        causally, and 0 where it can be attended to with full self-attention.

        Defaults to all text tokens being auto-regressive.

      train: bool whether we're in train or test mode (dropout etc).



    Returns:

      Tuple (x: float[B, N, E], input_mask: bool[B, N], mask_ar: int[B, N]) and

      auxiliary outputs.

    """
    zimg, out_img = self.embed_image(image, train=train)
    ztxt, out_txt = self.embed_text(text, train=train)

    if input_mask is None:
      input_mask = jnp.full(text.shape, True)
    if mask_ar is None:
      mask_ar = jnp.full(text.shape, 1)

    # Concatenate embeded image and text into a single token sequence.
    x = jnp.concatenate([zimg, ztxt], axis=1)
    _, img_len, _ = zimg.shape
    pad_width = ((0, 0), (img_len, 0))
    mask_ar = jnp.pad(mask_ar, pad_width, constant_values=0)
    input_mask = jnp.pad(input_mask, pad_width, constant_values=True)

    return (x, input_mask, mask_ar), {**out_img, **out_txt}

  def __call__(self, image, text, mask_ar, train=False):
    """Concats image/text and returns text logits.



    Args:

      image: float32[B, H, W, 3] image that can be passed to the `img` model.

      text: int32[B, T] token sequence that can be embedded by the `txt` model.

      mask_ar: int32[B, T] mask that's 1 where `text` should be attended to

        causally, and 0 where it can be attended to with full self-attention.

      train: bool whether we're in train or test mode (dropout etc).



    Returns:

      float32[B, T, V] logits for the `text` input, and an out-dict of named

      intermediates.

    """
    # Embed the image and text.
    (x, input_mask, mask_ar), out = self.embed_image_and_text(
        image, text, mask_ar=mask_ar, train=train)

    # Call transformer on the embedded token sequence.
    attn_mask = out["attn_mask"] = make_attn_mask(input_mask, mask_ar)
    _, out_llm = self._llm(x, mask=attn_mask, train=train)
    for k, v in out_llm.items():
      out[f"llm/{k}"] = v

    # Extract the logits for the text tokens.
    zimg = out["img/zimg"]
    text_pre_logits = out["llm/pre_logits"][:, zimg.shape[1]:, :]
    text_logits = self._llm.compute_logits(text_pre_logits, train=train)
    out["text_logits"] = text_logits
    out["text_tokens"] = jnp.argmax(text_logits, axis=-1)
    return text_logits, out

  def prefill_cache(self, x, input_mask, mask_ar, *, cache_size):
    """Initializes decoding cache with `x` [B, N, E] as prompt."""
    if hasattr(self._llm, "prefill_cache"):
      attn_mask = make_attn_mask(input_mask, mask_ar)
      return self._llm.prefill_cache(
          x, input_mask, attn_mask, cache_size=cache_size)
    else:
      return self._fallback_prefill_cache(x, input_mask, mask_ar, cache_size)

  def extend_cache(self, x):
    """Advances decoding cache with `x` [B, 1, E]."""
    if hasattr(self._llm, "prefill_cache"):
      return self._llm.extend_cache(x)
    else:
      return self._fallback_extend_cache(x)

  def _fallback_prefill_cache(self, x, input_mask, mask_ar, cache_size):
    # FALLBACK: only cache inputs and call the model with the full sequence
    # for each and every decode step. Very slowwww...
    #
    # This very slow codepath does not requires the model to implement caching.
    # It is intended to allow to plug any model under development quite early
    # into some decoding tasks and not as a long term decoding solution.
    attn_mask = make_attn_mask(input_mask, mask_ar)
    logits, _ = self._llm(x, mask=attn_mask)

    # Save the prefill inputs for subsequent extend_calls in the cache.
    # Unused entries are zero-initialized.
    pad_size = cache_size - x.shape[1]
    x = jnp.pad(jnp.where(input_mask[..., None], x, 0),
                [(0, 0), (0, pad_size), (0, 0)])
    mask_ar = jnp.pad(jnp.where(input_mask, mask_ar, 0),
                      [(0, 0), (0, pad_size)])
    input_mask = jnp.pad(input_mask, [(0, 0), (0, pad_size)])
    self.put_variable("cache", "x_cache", x)
    self.put_variable("cache", "input_mask_cache", input_mask)
    self.put_variable("cache", "mask_ar_cache", mask_ar)

    # Extract logits of the last token (using einsum).
    last_pos = jnp.sum(input_mask, axis=1)[:, None] - 1
    last_onehot = jax.nn.one_hot(last_pos, logits.shape[1], dtype=jnp.int32)
    last_logits = jnp.einsum("bnh,ben->beh", logits, last_onehot)

    return last_logits

  def _fallback_extend_cache(self, x):
    # FALLBACK: append inputs to cache and call the model with the full sequence
    # for each and every decode step. Very slowwww...
    assert x.shape[1] == 1
    mask_ar = jnp.full(x.shape[:-1], 1)
    input_mask = jnp.full(x.shape[:-1], True)

    # Append inputs to cache by add/or on the next available cache position,
    # which is zero-initialized.
    c_x = self.get_variable("cache", "x_cache")
    c_input_mask = self.get_variable("cache", "input_mask_cache")
    c_mask_ar = self.get_variable("cache", "mask_ar_cache")
    next_pos = jnp.sum(c_input_mask, axis=1)[:, None]
    move_onehot = jax.nn.one_hot(next_pos, c_x.shape[1], dtype=jnp.int32)
    x = jnp.add(c_x, jnp.einsum("beh,ben->bnh", x, move_onehot))
    mask_ar = jnp.add(c_mask_ar, jnp.einsum("be,ben->bn", mask_ar, move_onehot))
    input_mask = jnp.logical_or(
        c_input_mask, jnp.einsum("be,ben->bn", input_mask, move_onehot))
    self.put_variable("cache", "x_cache", x)
    self.put_variable("cache", "input_mask_cache", input_mask)
    self.put_variable("cache", "mask_ar_cache", mask_ar)

    # Call model on the full cached sequence.
    attn_mask = make_attn_mask(input_mask, mask_ar)
    logits, _ = self._llm(x, mask=attn_mask)

    # Extract logits of the last token.
    last_pos = jnp.sum(input_mask, axis=1)[:, None] - 1
    last_onehot = jax.nn.one_hot(last_pos, logits.shape[1], dtype=jnp.int32)
    last_logits = jnp.einsum("bnh,ben->beh", logits, last_onehot)

    return last_logits


# pylint: disable=line-too-long
import os
GEMMA_DIR = os.environ.get("BV_GEMMA_DIR", "PLEASE_SET_BV_GEMMA_DIR")
VANITY_NAMES = {
    # Because checkpoints are behind an ACK-wall, the user has to download them
    # to some folder (or bucket), take that from an environment variable.
    "pt_224": os.path.join(GEMMA_DIR, "pt_224.npz"),
    "pt_224.bf16": os.path.join(GEMMA_DIR, "pt_224.bf16.npz"),
    "pt_224.f16": os.path.join(GEMMA_DIR, "pt_224.f16.npz"),
    "pt_448": os.path.join(GEMMA_DIR, "pt_448.npz"),
    "pt_448.bf16": os.path.join(GEMMA_DIR, "pt_448.bf16.npz"),
    "pt_448.f16": os.path.join(GEMMA_DIR, "pt_448.f16.npz"),
    "pt_896": os.path.join(GEMMA_DIR, "pt_896.npz"),
    "pt_896.bf16": os.path.join(GEMMA_DIR, "pt_896.bf16.npz"),
    "pt_896.f16": os.path.join(GEMMA_DIR, "pt_896.f16.npz"),
}
# pylint: enable=line-too-long


def load(init_params, init_files, model_cfg, img_load_kw={}, llm_load_kw={}):  # pylint: disable=dangerous-default-value
  """Loads both pieces, `init_files` is now a dict with `img` and `llm` keys."""

  # A slight shortcut when loading an already combined model:
  if isinstance(init_files, str):
    init_files = VANITY_NAMES.get(init_files, init_files)
    init_files = {"img": f"{init_files}:img", "llm": f"{init_files}:llm"}

  if not init_params:  # Convenience to skip checks in colab.
    init_params = {"img": None, "llm": None}
  restored_params = {**init_params}

  init_files = {**init_files}  # Needed because ConfigDict but we'll pop stuff.

  if img_init := init_files.pop("img", None):
    restored_params["img"] = importlib.import_module(
        f"big_vision.models.{model_cfg.get('img_model', 'vit')}"
    ).load(init_params["img"], img_init, model_cfg.img, **img_load_kw)

  if llm_init := init_files.pop("llm", None):
    restored_params["llm"] = importlib.import_module(
        f"big_vision.models.{model_cfg.get('llm_model', 'proj.paligemma.gemma_bv')}"
    ).load(init_params["llm"], llm_init, model_cfg.llm, **llm_load_kw)

  assert not init_files, (
      f"There's something unused left in `config.model_init`. You probably got "
      f"a typo. Here it is: {init_files}")

  return restored_params