File size: 12,259 Bytes
fa1a600 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image encoder + AR-decoder LLM."""
import importlib
from typing import Any, Optional
import flax.linen as nn
import jax
import jax.numpy as jnp
ConfigDict = Any
def make_attn_mask(input_mask, mask_ar):
"""Returns attention mask bool[B, N, N] to use in transformer.
Tokens can attend to valid inputs tokens which have a cumulative mask_ar
smaller or equal to theirs. This way `mask_ar` int[B, N] can be used to
setup several types of attention, for example:
[[1 1 1 1 1 1]]: pure causal attention.
[[0 0 0 1 1 1]]: prefix-lm attention. The first 3 tokens can attend between
themselves and the last 3 tokens have a causal attention. The first
entry could also be a 1 without changing behaviour.
[[1 0 1 0 1 0 0 1 0 0]]: causal attention between 4 blocks. Tokens of a
block can attend all previous blocks and all tokens on the same block.
Args:
input_mask: bool[B, N] true if its part of the input, false if padding.
mask_ar: int32[B, N] mask that's 1 where previous tokens cannot depend on
it and 0 where it shares the same attention mask as the previous token.
"""
cumsum = jnp.cumsum(mask_ar, axis=1)
attn_mask = (cumsum[:, None, :] <= cumsum[:, :, None])
valid_mask = (input_mask[:, None, :] * input_mask[:, :, None])
return jnp.logical_and(attn_mask, valid_mask)
class Model(nn.Module):
"""Two towers transformer."""
img_model: str = "vit"
img: Optional[ConfigDict] = None
llm_model: str = "proj.paligemma.gemma_bv"
llm: Optional[ConfigDict] = None
def setup(self):
self._llm = importlib.import_module(
f"big_vision.models.{self.llm_model}"
).Model(**(self.llm or {}), name="llm")
img_config = {"num_classes": self._llm.embdim, **(self.img or {})}
self._img_model = importlib.import_module(
f"big_vision.models.{self.img_model}"
).Model(**img_config, name="img")
def embed_image(self, image, train=False):
out = {}
# if we have video, fold frame dimension into the batch dimension
image_shape = image.shape
if len(image_shape) == 5: # video frames
image = jnp.reshape(image, (-1, *image.shape[-3:]))
# Do we want to normalize? are they huge?
zimg, out_img = self._img_model(image, train=train)
if len(image_shape) == 5: # concatenate tokens from all video frames
zimg = jnp.reshape(zimg, (image_shape[0], -1, zimg.shape[-1]))
out["img/zimg"] = zimg
for k, v in out_img.items():
out[f"img/{k}"] = v
return zimg, out
def embed_text(self, tokens, train=False):
out = {}
ztxt = out["llm/ztxt"] = self._llm.embed_tokens(tokens, train=train)
return ztxt, out
def embed_image_and_text(self, image, text, *,
input_mask=None, mask_ar=None, train=False):
"""Concats image/text into a sequence of embeded tokens to pass to `llm`.
Args:
image: float[B, H, W, 3] image to be embedded by the `img` model and used
as prefix to the sequence passed to the `llm` model.
text: int32[B, T] token sequence to embedded by the `llm`.
input_mask: bool[B, T] true if the text token is a valid token and false
if its a token to pad the sequence. Defaults to all being input tokens.
mask_ar: int32[B, T] mask that's 1 where `text` should be attended to
causally, and 0 where it can be attended to with full self-attention.
Defaults to all text tokens being auto-regressive.
train: bool whether we're in train or test mode (dropout etc).
Returns:
Tuple (x: float[B, N, E], input_mask: bool[B, N], mask_ar: int[B, N]) and
auxiliary outputs.
"""
zimg, out_img = self.embed_image(image, train=train)
ztxt, out_txt = self.embed_text(text, train=train)
if input_mask is None:
input_mask = jnp.full(text.shape, True)
if mask_ar is None:
mask_ar = jnp.full(text.shape, 1)
# Concatenate embeded image and text into a single token sequence.
x = jnp.concatenate([zimg, ztxt], axis=1)
_, img_len, _ = zimg.shape
pad_width = ((0, 0), (img_len, 0))
mask_ar = jnp.pad(mask_ar, pad_width, constant_values=0)
input_mask = jnp.pad(input_mask, pad_width, constant_values=True)
return (x, input_mask, mask_ar), {**out_img, **out_txt}
def __call__(self, image, text, mask_ar, train=False):
"""Concats image/text and returns text logits.
Args:
image: float32[B, H, W, 3] image that can be passed to the `img` model.
text: int32[B, T] token sequence that can be embedded by the `txt` model.
mask_ar: int32[B, T] mask that's 1 where `text` should be attended to
causally, and 0 where it can be attended to with full self-attention.
train: bool whether we're in train or test mode (dropout etc).
Returns:
float32[B, T, V] logits for the `text` input, and an out-dict of named
intermediates.
"""
# Embed the image and text.
(x, input_mask, mask_ar), out = self.embed_image_and_text(
image, text, mask_ar=mask_ar, train=train)
# Call transformer on the embedded token sequence.
attn_mask = out["attn_mask"] = make_attn_mask(input_mask, mask_ar)
_, out_llm = self._llm(x, mask=attn_mask, train=train)
for k, v in out_llm.items():
out[f"llm/{k}"] = v
# Extract the logits for the text tokens.
zimg = out["img/zimg"]
text_pre_logits = out["llm/pre_logits"][:, zimg.shape[1]:, :]
text_logits = self._llm.compute_logits(text_pre_logits, train=train)
out["text_logits"] = text_logits
out["text_tokens"] = jnp.argmax(text_logits, axis=-1)
return text_logits, out
def prefill_cache(self, x, input_mask, mask_ar, *, cache_size):
"""Initializes decoding cache with `x` [B, N, E] as prompt."""
if hasattr(self._llm, "prefill_cache"):
attn_mask = make_attn_mask(input_mask, mask_ar)
return self._llm.prefill_cache(
x, input_mask, attn_mask, cache_size=cache_size)
else:
return self._fallback_prefill_cache(x, input_mask, mask_ar, cache_size)
def extend_cache(self, x):
"""Advances decoding cache with `x` [B, 1, E]."""
if hasattr(self._llm, "prefill_cache"):
return self._llm.extend_cache(x)
else:
return self._fallback_extend_cache(x)
def _fallback_prefill_cache(self, x, input_mask, mask_ar, cache_size):
# FALLBACK: only cache inputs and call the model with the full sequence
# for each and every decode step. Very slowwww...
#
# This very slow codepath does not requires the model to implement caching.
# It is intended to allow to plug any model under development quite early
# into some decoding tasks and not as a long term decoding solution.
attn_mask = make_attn_mask(input_mask, mask_ar)
logits, _ = self._llm(x, mask=attn_mask)
# Save the prefill inputs for subsequent extend_calls in the cache.
# Unused entries are zero-initialized.
pad_size = cache_size - x.shape[1]
x = jnp.pad(jnp.where(input_mask[..., None], x, 0),
[(0, 0), (0, pad_size), (0, 0)])
mask_ar = jnp.pad(jnp.where(input_mask, mask_ar, 0),
[(0, 0), (0, pad_size)])
input_mask = jnp.pad(input_mask, [(0, 0), (0, pad_size)])
self.put_variable("cache", "x_cache", x)
self.put_variable("cache", "input_mask_cache", input_mask)
self.put_variable("cache", "mask_ar_cache", mask_ar)
# Extract logits of the last token (using einsum).
last_pos = jnp.sum(input_mask, axis=1)[:, None] - 1
last_onehot = jax.nn.one_hot(last_pos, logits.shape[1], dtype=jnp.int32)
last_logits = jnp.einsum("bnh,ben->beh", logits, last_onehot)
return last_logits
def _fallback_extend_cache(self, x):
# FALLBACK: append inputs to cache and call the model with the full sequence
# for each and every decode step. Very slowwww...
assert x.shape[1] == 1
mask_ar = jnp.full(x.shape[:-1], 1)
input_mask = jnp.full(x.shape[:-1], True)
# Append inputs to cache by add/or on the next available cache position,
# which is zero-initialized.
c_x = self.get_variable("cache", "x_cache")
c_input_mask = self.get_variable("cache", "input_mask_cache")
c_mask_ar = self.get_variable("cache", "mask_ar_cache")
next_pos = jnp.sum(c_input_mask, axis=1)[:, None]
move_onehot = jax.nn.one_hot(next_pos, c_x.shape[1], dtype=jnp.int32)
x = jnp.add(c_x, jnp.einsum("beh,ben->bnh", x, move_onehot))
mask_ar = jnp.add(c_mask_ar, jnp.einsum("be,ben->bn", mask_ar, move_onehot))
input_mask = jnp.logical_or(
c_input_mask, jnp.einsum("be,ben->bn", input_mask, move_onehot))
self.put_variable("cache", "x_cache", x)
self.put_variable("cache", "input_mask_cache", input_mask)
self.put_variable("cache", "mask_ar_cache", mask_ar)
# Call model on the full cached sequence.
attn_mask = make_attn_mask(input_mask, mask_ar)
logits, _ = self._llm(x, mask=attn_mask)
# Extract logits of the last token.
last_pos = jnp.sum(input_mask, axis=1)[:, None] - 1
last_onehot = jax.nn.one_hot(last_pos, logits.shape[1], dtype=jnp.int32)
last_logits = jnp.einsum("bnh,ben->beh", logits, last_onehot)
return last_logits
# pylint: disable=line-too-long
import os
GEMMA_DIR = os.environ.get("BV_GEMMA_DIR", "PLEASE_SET_BV_GEMMA_DIR")
VANITY_NAMES = {
# Because checkpoints are behind an ACK-wall, the user has to download them
# to some folder (or bucket), take that from an environment variable.
"pt_224": os.path.join(GEMMA_DIR, "pt_224.npz"),
"pt_224.bf16": os.path.join(GEMMA_DIR, "pt_224.bf16.npz"),
"pt_224.f16": os.path.join(GEMMA_DIR, "pt_224.f16.npz"),
"pt_448": os.path.join(GEMMA_DIR, "pt_448.npz"),
"pt_448.bf16": os.path.join(GEMMA_DIR, "pt_448.bf16.npz"),
"pt_448.f16": os.path.join(GEMMA_DIR, "pt_448.f16.npz"),
"pt_896": os.path.join(GEMMA_DIR, "pt_896.npz"),
"pt_896.bf16": os.path.join(GEMMA_DIR, "pt_896.bf16.npz"),
"pt_896.f16": os.path.join(GEMMA_DIR, "pt_896.f16.npz"),
}
# pylint: enable=line-too-long
def load(init_params, init_files, model_cfg, img_load_kw={}, llm_load_kw={}): # pylint: disable=dangerous-default-value
"""Loads both pieces, `init_files` is now a dict with `img` and `llm` keys."""
# A slight shortcut when loading an already combined model:
if isinstance(init_files, str):
init_files = VANITY_NAMES.get(init_files, init_files)
init_files = {"img": f"{init_files}:img", "llm": f"{init_files}:llm"}
if not init_params: # Convenience to skip checks in colab.
init_params = {"img": None, "llm": None}
restored_params = {**init_params}
init_files = {**init_files} # Needed because ConfigDict but we'll pop stuff.
if img_init := init_files.pop("img", None):
restored_params["img"] = importlib.import_module(
f"big_vision.models.{model_cfg.get('img_model', 'vit')}"
).load(init_params["img"], img_init, model_cfg.img, **img_load_kw)
if llm_init := init_files.pop("llm", None):
restored_params["llm"] = importlib.import_module(
f"big_vision.models.{model_cfg.get('llm_model', 'proj.paligemma.gemma_bv')}"
).load(init_params["llm"], llm_init, model_cfg.llm, **llm_load_kw)
assert not init_files, (
f"There's something unused left in `config.model_init`. You probably got "
f"a typo. Here it is: {init_files}")
return restored_params
|