File size: 5,646 Bytes
fa1a600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Implements ScienceQA train/val/test-set in TFDS structure.



First, download the science QA dataset from their website https://scienceqa.github.io/#download

  - mkdir -p /tmp/data/ScienceQA_DATA

  - From Google Drive: https://drive.google.com/corp/drive/folders/1w8imCXWYn2LxajmGeGH_g5DaL2rabHev

Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):

  - cd big_vision/datasets

  - env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=science_qa



Example to load:



  import tensorflow_datasets as tfds

  dataset = tfds.load(

      'science_qa', split='train',

      data_dir='/tmp/tfds')



"""
import json
import os

import numpy as np
import tensorflow_datasets as tfds


_DESCRIPTION = """Sci QA test-set."""

# pylint: disable=line-too-long
_CITATION = """

@inproceedings{lu2022learn,

    title={Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering},

    author={Lu, Pan and Mishra, Swaroop and Xia, Tony and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Ashwin Kalyan},

    booktitle={The 36th Conference on Neural Information Processing Systems (NeurIPS)},

    year={2022}

}

"""
# pylint: enable=line-too-long

# When running locally (recommended), copy files as above an use these:
_SCIQA_PATH = '/tmp/data/ScienceQA_DATA/'
# _IMAGE_COCO_PATH = '/tmp/data/val2014'

_ALPHABETS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'


class ScienceQA(tfds.core.GeneratorBasedBuilder):
  """DatasetBuilder for ScienceQA dataset."""

  VERSION = tfds.core.Version('1.0.0')
  RELEASE_NOTES = {'1.0.0': 'First release.'}

  def _info(self):
    """Returns the metadata."""

    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            'question': tfds.features.Text(),
            'choices': tfds.features.Sequence(tfds.features.Text()),
            'answer': tfds.features.Scalar(np.int32),
            'hint': tfds.features.Text(),
            'task': tfds.features.Text(),
            'grade': tfds.features.Text(),
            'subject': tfds.features.Text(),
            'topic': tfds.features.Text(),
            'category': tfds.features.Text(),
            'skill': tfds.features.Text(),
            'lecture': tfds.features.Text(),
            'solution': tfds.features.Text(),
            'image': tfds.features.Image(encoding_format='png'),
            'indexed_choices': tfds.features.Text(),
            'indexed_answer': tfds.features.Text(),
        }),
        supervised_keys=None,
        homepage='https://github.com/lupantech/ScienceQA/tree/main',
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager):
    """Returns SplitGenerators."""
    return {
        split: self._generate_examples(split)
        for split in ('train', 'test', 'val')
    }

  def _generate_examples(self, split):
    """Yields (key, example) tuples from test set."""
    annot_fname = os.path.join(_SCIQA_PATH, 'problems.json')

    with open(annot_fname, 'r') as f:
      data = json.loads(f.read())

    for k, v in data.items():
      if v['split'] == split:  #  "split":"train"
        image = v['image']
        # Science QA contains the example without image as well. As this
        # conversion is for VQA tasks, we dropped the examples without Image.
        # TODO: Include the examples without image, and udpate the
        # downstream pipeline to skip the examples without image, instead of
        # doing it at pre-processing.
        if image:
          image = os.path.join(f'{_SCIQA_PATH}/{split}/{k}/', f'{image}')
        else:
          # image = None
          continue
        question = v['question']
        choices = v['choices']
        answer = v['answer']
        hint = v['hint']
        if not hint:
          hint = 'N/A'  # align with orignal github implementation
        task = v['task']
        grade = v['grade']
        subject = v['subject']
        topic = v['topic']
        category = v['category']
        skill = v['skill']
        lecture = v['lecture']
        solution = v['solution']
        split = v['split']
        indexed_choices = ', '.join(
            f'({_ALPHABETS[i]}) {c}' for i, c in enumerate(choices)
        )
        indexed_answer = _ALPHABETS[int(answer)]
        yield int(k), {
            'question': question,
            'choices': choices,
            'answer': answer,
            'hint': hint,
            'task': task,
            'grade': grade,
            'subject': subject,
            'topic': topic,
            'category': category,
            'skill': skill,
            'lecture': lecture,
            'solution': solution,
            'image': image,
            'indexed_choices': indexed_choices,
            'indexed_answer': indexed_answer,
        }