File size: 7,854 Bytes
fa1a600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Implements the OKVQA dataset for TFDS.



Download the required files from https://okvqa.allenai.org/download.html:



mkdir -p /tmp/tfds

cd /tmp/tfds/

wget http://images.cocodataset.org/zips/train2014.zip

wget http://images.cocodataset.org/zips/val2014.zip

wget https://okvqa.allenai.org/static/data/mscoco_train2014_annotations.json.zip

wget https://okvqa.allenai.org/static/data/mscoco_val2014_annotations.json.zip

wget https://okvqa.allenai.org/static/data/OpenEnded_mscoco_train2014_questions.json.zip

wget https://okvqa.allenai.org/static/data/OpenEnded_mscoco_val2014_questions.json.zip

unzip val2014.zip

unzip train2014.zip

unzip OpenEnded_mscoco_train2014_questions.json.zip

unzip OpenEnded_mscoco_val2014_questions.json.zip

unzip mscoco_train2014_annotations.json.zip

unzip mscoco_val2014_annotations.json.zip



Then, run conversion locally (make sure to install tensorflow-datasets for the

`tfds` util):



  cd big_vision/datasets

  env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=okvqa



Example to load:



  import tensorflow_datasets as tfds

  dataset = tfds.load('okvqa', split='val', data_dir='/tmp/tfds')

"""

import json
import os
from typing import Any
import numpy as np
import tensorflow_datasets as tfds

_DESCRIPTION = """

OKVQA addresses the task of VQA with outside knowledge.

This version of the dataset contains:

- Questions + Answers from OKVQA.

- Images from COCO.

"""

_CITATION = """

@InProceedings{okvqa,

author = {Kenneth Marino and Mohammad Rastegari and Ali Farhadi and Roozbeh Mottaghi},

title = {OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge},

booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},

year = {2019},

}

"""

ANNOTATION_FILE = {
    'train': 'mscoco_train2014_annotations.json',
    'val': 'mscoco_val2014_annotations.json',
}
QUESTIONS_FILE = {
    'train': 'OpenEnded_mscoco_train2014_questions.json',
    'val': 'OpenEnded_mscoco_val2014_questions.json',
}
QUESTION_TYPES = {
    'one': 'Vehicles and Transportation',
    'two': 'Brands, Companies and Products',
    'three': 'Objects, Material and Clothing',
    'four': 'Sports and Recreation',
    'five': 'Cooking and Food',
    'six': 'Geography, History, Language and Culture',
    'seven': 'People and Everyday life',
    'eight': 'Plants and Animals',
    'nine': 'Science and Technology',
    'ten': 'Weather and Climate',
    'other': 'Other',
}


# When running locally (recommended), copy files as above an use these:
_OKVQA_PATH = '/media/scratch/okvqa'


class OkVqa(tfds.core.GeneratorBasedBuilder):
  """Import COCO dataset for OKVQA with KAT features."""

  VERSION = tfds.core.Version('1.0.0')
  RELEASE_NOTES = {'1.0.0': 'Changed to array record format.'}
  MANUAL_DOWNLOAD_INSTRUCTIONS = """

  In manual_dir/ you should have a directory okvqa which contains the

  following files and directories:

  From the OKVQA dataset:

  - mscoco_train2014_annotations.json

  - mscoco_val2014_annotations.json

  - OpenEnded_mscoco_train2014_questions.json

  - OpenEnded_mscoco_val2014_questions.json

  - train2014.zip

  - val2014.zip

  """

  def _info(self) -> tfds.core.DatasetInfo:
    """Returns the dataset metadata."""
    features = tfds.features.FeaturesDict({
        'image': tfds.features.Image(shape=(None, None, 3)),
        'image_id': tfds.features.Scalar(dtype=np.int64),
        'answer_type': tfds.features.Text(),
        'answers': tfds.features.Sequence(tfds.features.Text()),
        'answers_confidence': tfds.features.Tensor(shape=[10], dtype=np.bool_),
        'answers_raw': tfds.features.Sequence(tfds.features.Text()),
        'question_id': tfds.features.Scalar(dtype=np.int64),
        'question_type': tfds.features.Text(),
        'question_type_readable': tfds.features.Text(),
        'question': tfds.features.Text(),
    })

    return tfds.core.DatasetInfo(
        builder=self,
        features=features,
        description=_DESCRIPTION,
        supervised_keys=None,
        homepage='https://okvqa.allenai.org/',
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager) -> ...:
    """Call the function which defines the splits."""
    # data_dir = dl_manager.manual_dir
    data_dir = _OKVQA_PATH
    return {
        'train': self._generate_examples(data_dir, 'train'),
        'val': self._generate_examples(data_dir, 'val'),
    }

  def _generate_examples(self, data_dir: str, split: str) -> ...:
    annotations = get_okvqa_annotations(data_dir, split)

    for question_id, annotation in annotations.items():
      image_id = annotation['image_id']

      # Sanity check.
      if len(annotation['answers']) != 10:
        num_answers = len(annotation['answers'])
        raise ValueError(
            f'The number of answers for {image_id} is not 10 but {num_answers}')

      feature_dict = {
          'image': self.get_image_path(data_dir, split, image_id),
          'image_id': image_id,
          'answer_type': annotation['answer_type'],
          'answers': [a['answer'] for a in annotation['answers']],
          'answers_confidence': _get_answer_confidence(annotation['answers']),
          'answers_raw': [a['raw_answer'] for a in annotation['answers']],
          'question_id': annotation['question_id'],
          'question_type': annotation['question_type'],
          'question_type_readable': QUESTION_TYPES[annotation['question_type']],
          'question': annotation['question'],
      }
      yield f'{question_id}', feature_dict

  def get_image_path(self, data_dir: str, split: str, image_id: int) -> str:
    subdir = {'train': 'train2014', 'val': 'val2014'}[split]
    return f'{data_dir}/{subdir}/COCO_{subdir}_{image_id:012d}.jpg'


def _get_answer_confidence(answers: list[dict[str, str]]) -> np.ndarray:
  """Get OKVQA answer confidences as bool."""
  confidences = []
  for a in answers:
    confidence = a['answer_confidence']
    if confidence == 'yes':
      confidences.append(True)
    elif confidence == 'no':
      confidences.append(False)
    else:
      raise ValueError(f'Unknown confidence: {confidence}')
  return np.array(confidences, dtype=bool)


def _read_json(

    data_dir: str, file: str, key: str

) -> dict[int, dict[str, Any]]:
  with open(os.path.join(data_dir, file)) as f:
    data = json.load(f)
  questions = {d['question_id']: d for d in data[key]}
  return questions


def get_okvqa_annotations(

    data_dir: str, split: str

) -> dict[int, dict[str, Any]]:
  """Return okvqa annotations (quesions and answers) as dictionary."""
  questions = _read_json(data_dir, QUESTIONS_FILE[split], 'questions')
  annotations = _read_json(data_dir, ANNOTATION_FILE[split], 'annotations')

  assert len(annotations) == len(questions)
  for question_id, question in questions.items():
    assert question['image_id'] == annotations[question_id]['image_id']
    assert question['question_id'] == annotations[question_id]['question_id']
    annotations[question_id]['question'] = question['question']

  return annotations