from optimum.onnxruntime import ORTModelForFeatureExtraction from transformers import AutoTokenizer, Pipeline import torch.nn.functional as F import torch from typing import Any, Dict, List # copied from the model card def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) class SentenceEmbeddingPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): # we don't have any hyperameters to sanitize preprocess_kwargs = {} return preprocess_kwargs, {}, {} def preprocess(self, inputs): encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt') return encoded_inputs def _forward(self, model_inputs): outputs = self.model(**model_inputs) return {"outputs": outputs, "attention_mask": model_inputs["attention_mask"]} def postprocess(self, model_outputs): # Perform pooling sentence_embeddings = mean_pooling(model_outputs["outputs"], model_outputs['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) return sentence_embeddings class EndpointHandler(): def __init__(self, path="./"): # load the optimized model model = ORTModelForFeatureExtraction.from_pretrained( path,file_name="model_optimized.onnx", # provider="CPUExecutionProvider", ) tokenizer = AutoTokenizer.from_pretrained(path) # create inference pipeline self.pl = SentenceEmbeddingPipeline(model=model, tokenizer=tokenizer) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # pass inputs with all kwargs in data if parameters is not None: prediction = self.pl(inputs, **parameters) else: prediction = self.pl(inputs) # postprocess the prediction return { "embeddings": prediction.cpu().tolist() }