kbu1564 commited on
Commit
4d88cd0
·
verified ·
1 Parent(s): b8c527c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -14
README.md CHANGED
@@ -55,25 +55,27 @@ This represents approximately a 39× reduction in pretraining cost relative to `
55
 
56
  ### Python Code
57
  For better inference results with `HyperCLOVAX-SEED-Text-Instruct-0.5B`, we recommend setting `repetition_penalty` to `1.2`.
58
- ```python
59
- from transformers import AutoModelForCausalLM, AutoTokenizer
60
- model = AutoModelForCausalLM.from_pretrained("naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-0.5B").to(device="cuda")
61
- tokenizer = AutoTokenizer.from_pretrained("naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-0.5B")
62
 
63
  chat = [
64
- {"role": "tool_list", "content": ""},
65
- {"role": "system", "content": "- AI 언어모델의 이름은 \"CLOVA X\" 이며 네이버에서 만들었다.\n- 오늘은 2025년 04월 24일(목)이다."},
66
- {"role": "user", "content": "슈뢰딩거 방정식과 양자역학의 관계를 최대한 자세히 알려줘."},
67
  ]
68
 
69
  inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_dict=True, return_tensors="pt")
70
- inputs = inputs.to(device="cuda")
71
- output_ids = model.generate(**inputs,
72
- max_length=1024,
73
- stop_strings=["<|endofturn|>", "<|stop|>"],
74
- repetition_penalty=1.2,
75
- tokenizer=tokenizer)
76
- print(tokenizer.batch_decode(output_ids))
 
 
77
  ```
78
 
79
  ### Result
 
55
 
56
  ### Python Code
57
  For better inference results with `HyperCLOVAX-SEED-Text-Instruct-0.5B`, we recommend setting `repetition_penalty` to `1.2`.
58
+ ```
59
+ model_name = "naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-0.5B"
60
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
61
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
62
 
63
  chat = [
64
+ {"role": "tool_list", "content": ""},
65
+ {"role": "system", "content": "- AI 언어모델의 이름은 \"CLOVA X\" 이며 네이버에서 만들었다.\n- 오늘은 2025년 04월 24일(목)이다."},
66
+ {"role": "user", "content": "슈뢰딩거 방정식과 양자역학의 관계를 최대한 자세히 알려줘."},
67
  ]
68
 
69
  inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_dict=True, return_tensors="pt")
70
+ inputs = inputs.to("cuda")
71
+ output_ids = model.generate(
72
+ **inputs,
73
+ max_length=1024,
74
+ stop_strings=["<|endofturn|>", "<|stop|>"],
75
+ repetition_penalty=1.2,
76
+ tokenizer=tokenizer
77
+ )
78
+ print(tokenizer.batch_decode(output_ids)[0])
79
  ```
80
 
81
  ### Result