update Readme
Browse filesSigned-off-by: mymusise <[email protected]>
README.md
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: zh
|
| 3 |
+
widget:
|
| 4 |
+
- text: "天下熙熙,"
|
| 5 |
+
- text: "天气不错,"
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
<h1 align="center">
|
| 9 |
+
CPM-Generate-distill
|
| 10 |
+
</h1>
|
| 11 |
+
|
| 12 |
+
CPM(Chinese Pre-Trained Language Models), which has 2.6B parameters, made by the research team of Beijing Zhiyuan Institute of artificial intelligence and Tsinghua University @TsinghuaAI.
|
| 13 |
+
|
| 14 |
+
[repo: CPM-Generate](https://github.com/TsinghuaAI/CPM-Generate)
|
| 15 |
+
The One Thing You Need to Know is this model is not uploaded by official, the conver script is [here](https://github.com/mymusise/CPM-TF2Transformer/blob/main/transfor_CMP.ipynb)
|
| 16 |
+
|
| 17 |
+
And the `CPM-Generate-distill` is the distill model of `CPM`.
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# How to use
|
| 21 |
+
|
| 22 |
+
How to use this model directly from the 🤗/transformers library:
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
from transformers import XLNetTokenizer, TFGPT2LMHeadModel
|
| 26 |
+
from transformers import TextGenerationPipeline
|
| 27 |
+
import jieba
|
| 28 |
+
# add spicel process
|
| 29 |
+
class XLNetTokenizer(XLNetTokenizer):
|
| 30 |
+
translator = str.maketrans(" \n", "\u2582\u2583")
|
| 31 |
+
def _tokenize(self, text, *args, **kwargs):
|
| 32 |
+
text = [x.translate(self.translator) for x in jieba.cut(text, cut_all=False)]
|
| 33 |
+
text = " ".join(text)
|
| 34 |
+
return super()._tokenize(text, *args, **kwargs)
|
| 35 |
+
def _decode(self, *args, **kwargs):
|
| 36 |
+
text = super()._decode(*args, **kwargs)
|
| 37 |
+
text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583', '\n')
|
| 38 |
+
return text
|
| 39 |
+
|
| 40 |
+
tokenizer = XLNetTokenizer.from_pretrained('mymusise/CPM-Generate-distill')
|
| 41 |
+
model = TFGPT2LMHeadModel.from_pretrained("mymusise/CPM-Generate-distill")
|
| 42 |
+
|
| 43 |
+
text_generater = TextGenerationPipeline(model, tokenizer)
|
| 44 |
+
|
| 45 |
+
print(text_generater("天下熙熙,", max_length=15, top_k=1, use_cache=True, prefix=''))
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+

|