Upload Import_Replicate_SDXL_LoRA_to_Hugging_Face_🤗.ipynb
Browse files
Import_Replicate_SDXL_LoRA_to_Hugging_Face_🤗.ipynb
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"private_outputs": true,
|
7 |
+
"provenance": []
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"cells": [
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": null,
|
21 |
+
"metadata": {
|
22 |
+
"id": "EzgI2tPTO97I"
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"#@markdown Install OS dependencies\n",
|
27 |
+
"!apt-get install -y skopeo\n",
|
28 |
+
"!apt-get install -y jq"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"source": [
|
34 |
+
"#@markdown Install python dependencies\n",
|
35 |
+
"!pip install huggingface_hub"
|
36 |
+
],
|
37 |
+
"metadata": {
|
38 |
+
"id": "jitE6IrayFDH"
|
39 |
+
},
|
40 |
+
"execution_count": null,
|
41 |
+
"outputs": []
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"source": [
|
46 |
+
"#@markdown Choose the Replicate SDXL LoRA repository you would like to upload to Hugging Face (you don't need to be the author). Grab your Replicate token [here](https://replicate.com/account/api-tokens)\n",
|
47 |
+
"import requests\n",
|
48 |
+
"import json\n",
|
49 |
+
"\n",
|
50 |
+
"replicate_model = \"fofr/sdxl-emoji\" #@param {type: \"string\"}\n",
|
51 |
+
"replicate_token = \"r8_***\" #@param {type: \"string\"}\n",
|
52 |
+
"\n",
|
53 |
+
"headers = { \"Authorization\": f\"Token {replicate_token}\" }\n",
|
54 |
+
"url = f\"https://api.replicate.com/v1/models/{replicate_model}\"\n",
|
55 |
+
"\n",
|
56 |
+
"response = requests.get(url, headers=headers)\n",
|
57 |
+
"model_data = response.json()\n",
|
58 |
+
"model_latest_version = model_data['latest_version']['id']\n",
|
59 |
+
"lora_name = model_data['name']\n",
|
60 |
+
"lora_author = model_data['owner']\n",
|
61 |
+
"lora_description = model_data['description']\n",
|
62 |
+
"lora_url = model_data['url']\n",
|
63 |
+
"lora_image = model_data['cover_image_url']\n",
|
64 |
+
"lora_docker_image = f\"{lora_name}@sha256:{model_latest_version}\"\n",
|
65 |
+
"default_prompt = model_data[\"default_example\"][\"input\"][\"prompt\"]"
|
66 |
+
],
|
67 |
+
"metadata": {
|
68 |
+
"id": "1SNPPvVVUk5T"
|
69 |
+
},
|
70 |
+
"execution_count": null,
|
71 |
+
"outputs": []
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"source": [
|
76 |
+
"!skopeo inspect docker://r8.im/lucataco/sdxl-panoramic@sha256:76acc4075d0633dcb3823c1fed0419de21d42001b65c816c7b5b9beff30ec8cd"
|
77 |
+
],
|
78 |
+
"metadata": {
|
79 |
+
"id": "_EYVnbuUV5yd"
|
80 |
+
},
|
81 |
+
"execution_count": null,
|
82 |
+
"outputs": []
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"source": [
|
87 |
+
"!sh data.sh"
|
88 |
+
],
|
89 |
+
"metadata": {
|
90 |
+
"id": "1wv2AxI2eVp9"
|
91 |
+
},
|
92 |
+
"execution_count": null,
|
93 |
+
"outputs": []
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"source": [
|
98 |
+
"#@markdown Grab the trained LoRA and unTAR to a folder\n",
|
99 |
+
"cmd = f'skopeo inspect docker://r8.im/{replicate_model}@sha256:{model_latest_version} --config | jq -r \\'.config.Env[] | select(startswith(\"COG_WEIGHTS=\"))\\' | awk -F= \\'{{print $2}}\\''\n",
|
100 |
+
"print(cmd)\n",
|
101 |
+
"url = !{cmd}\n",
|
102 |
+
"print(url)\n",
|
103 |
+
"url = url[0]\n",
|
104 |
+
"tar_name = url.split(\"/\")[-1]\n",
|
105 |
+
"folder_name = \"lora_folder\" #@param {type:\"string\"}\n",
|
106 |
+
"!mkdir {folder_name}\n",
|
107 |
+
"!wget {url}\n",
|
108 |
+
"!tar -xvf {tar_name} -C {folder_name}"
|
109 |
+
],
|
110 |
+
"metadata": {
|
111 |
+
"id": "cdtnTm0GPLFH"
|
112 |
+
},
|
113 |
+
"execution_count": null,
|
114 |
+
"outputs": []
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"source": [
|
119 |
+
"#@markdown Login with Hugging Face Hub (pick a `write` token)\n",
|
120 |
+
"from huggingface_hub import notebook_login, upload_folder, create_repo\n",
|
121 |
+
"notebook_login()"
|
122 |
+
],
|
123 |
+
"metadata": {
|
124 |
+
"id": "eV6ApIY6dU4K"
|
125 |
+
},
|
126 |
+
"execution_count": null,
|
127 |
+
"outputs": []
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"source": [
|
132 |
+
"#@markdown Insert the `hf_repo` you would like to upload this model to. It has to be either the you logged in above from (e.g.: `fofr`, `zeke`, `nateraw`) or an organization you are part of (e.g.: `replicate`)\n",
|
133 |
+
"hf_repo = \"multimodalart\" #@param {type: \"string\"}"
|
134 |
+
],
|
135 |
+
"metadata": {
|
136 |
+
"id": "5LCbCbjZdnZZ"
|
137 |
+
},
|
138 |
+
"execution_count": null,
|
139 |
+
"outputs": []
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"source": [
|
144 |
+
"#@markdown Create HF model repo `hf_repo/lora_name`\n",
|
145 |
+
"hf_model_slug = f\"{hf_repo}/{lora_name}\"\n",
|
146 |
+
"create_repo(hf_model_slug, repo_type=\"model\")"
|
147 |
+
],
|
148 |
+
"metadata": {
|
149 |
+
"id": "ZVWoAy1U2cis"
|
150 |
+
},
|
151 |
+
"execution_count": null,
|
152 |
+
"outputs": []
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"source": [
|
157 |
+
"#@markdown Set up the `README.md` for the HF model repo.\n",
|
158 |
+
"\n",
|
159 |
+
"#Replaces the nicename token with the\n",
|
160 |
+
"#model's token as specified in the `special_params.json`\n",
|
161 |
+
"replaced_prompt = default_prompt\n",
|
162 |
+
"activation_triggers = []\n",
|
163 |
+
"with open(f'{folder_name}/special_params.json', 'r') as f:\n",
|
164 |
+
" token_data = json.load(f)\n",
|
165 |
+
"for key, value in token_data.items():\n",
|
166 |
+
" replaced_prompt = replaced_prompt.replace(key, value)\n",
|
167 |
+
" activation_triggers.append(value)\n",
|
168 |
+
"comma_activation_triggers = ', '.join(map(str, activation_triggers))\n",
|
169 |
+
"README_TEXT = f'''---\n",
|
170 |
+
"license: creativeml-openrail-m\n",
|
171 |
+
"tags:\n",
|
172 |
+
" - text-to-image\n",
|
173 |
+
" - stable-diffusion\n",
|
174 |
+
" - lora\n",
|
175 |
+
" - diffusers\n",
|
176 |
+
" - pivotal-tuning\n",
|
177 |
+
"base_model: stabilityai/stable-diffusion-xl-base-1.0\n",
|
178 |
+
"pivotal_tuning: true\n",
|
179 |
+
"textual_embeddings: embeddings.pti\n",
|
180 |
+
"instance_prompt: {comma_activation_triggers}\n",
|
181 |
+
"inference: true\n",
|
182 |
+
"---\n",
|
183 |
+
"# {lora_name} LoRA by [{lora_author}](https://replicate.com/{lora_author})\n",
|
184 |
+
"### {lora_description}\n",
|
185 |
+
"\n",
|
186 |
+
"\n",
|
187 |
+
">\n",
|
188 |
+
"\n",
|
189 |
+
"## Inference with Replicate API\n",
|
190 |
+
"Grab your replicate token [here](https://replicate.com/account)\n",
|
191 |
+
"```bash\n",
|
192 |
+
"pip install replicate\n",
|
193 |
+
"export REPLICATE_API_TOKEN=r8_*************************************\n",
|
194 |
+
"```\n",
|
195 |
+
"\n",
|
196 |
+
"```py\n",
|
197 |
+
"import replicate\n",
|
198 |
+
"\n",
|
199 |
+
"output = replicate.run(\n",
|
200 |
+
" \"{lora_docker_image}\",\n",
|
201 |
+
" input={{\"prompt\": \"{default_prompt}\"}}\n",
|
202 |
+
")\n",
|
203 |
+
"print(output)\n",
|
204 |
+
"```\n",
|
205 |
+
"You may also do inference via the API with Node.js or curl, and locally with COG and Docker, [check out the Replicate API page for this model]({lora_url}/api)\n",
|
206 |
+
"\n",
|
207 |
+
"## Inference with 🧨 diffusers\n",
|
208 |
+
"Replicate SDXL LoRAs are trained with Pivotal Tuning, which combines training a concept via Dreambooth LoRA with training a new token with Textual Inversion.\n",
|
209 |
+
"As `diffusers` doesn't yet support textual inversion for SDXL, we will use cog-sdxl `TokenEmbeddingsHandler` class.\n",
|
210 |
+
"\n",
|
211 |
+
"The trigger tokens for your prompt will be `{comma_activation_triggers}`\n",
|
212 |
+
"\n",
|
213 |
+
"```shell\n",
|
214 |
+
"pip install diffusers transformers accelerate safetensors huggingface_hub\n",
|
215 |
+
"git clone https://github.com/replicate/cog-sdxl cog_sdxl\n",
|
216 |
+
"```\n",
|
217 |
+
"\n",
|
218 |
+
"```py\n",
|
219 |
+
"import torch\n",
|
220 |
+
"from huggingface_hub import hf_hub_download\n",
|
221 |
+
"from diffusers import DiffusionPipeline\n",
|
222 |
+
"from safetensors.torch import load_file\n",
|
223 |
+
"from diffusers.models import AutoencoderKL\n",
|
224 |
+
"\n",
|
225 |
+
"pipe = DiffusionPipeline.from_pretrained(\n",
|
226 |
+
" \"stabilityai/stable-diffusion-xl-base-1.0\",\n",
|
227 |
+
" torch_dtype=torch.float16,\n",
|
228 |
+
" variant=\"fp16\",\n",
|
229 |
+
").to(\"cuda\")\n",
|
230 |
+
"\n",
|
231 |
+
"pipe.load_lora_weights(\"{hf_model_slug}\", weight_name=\"lora.safetensors\")\n",
|
232 |
+
"\n",
|
233 |
+
"embedding_path = hf_hub_download(repo_id=\"{hf_model_slug}\", filename=\"embeddings.pti\", repo_type=\"model\")\n",
|
234 |
+
"\n",
|
235 |
+
"state_dict = load_file(embedding_path)\n",
|
236 |
+
"\n",
|
237 |
+
"pipe.load_textual_inversion(state_dict[\"text_encoders_0\"], token=[\"<s0>\", \"<s1>\"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)\n",
|
238 |
+
"pipe.load_textual_inversion(state_dict[\"text_encoders_1\"], token=[\"<s0>\", \"<s1>\"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)\n",
|
239 |
+
"\n",
|
240 |
+
"prompt=\"{replaced_prompt}\"\n",
|
241 |
+
"images = pipe(\n",
|
242 |
+
" prompt,\n",
|
243 |
+
" cross_attention_kwargs={{\"scale\": 0.8}},\n",
|
244 |
+
").images\n",
|
245 |
+
"#your output image\n",
|
246 |
+
"images[0]\n",
|
247 |
+
"```\n",
|
248 |
+
"'''\n",
|
249 |
+
"\n",
|
250 |
+
"with open(f'{folder_name}/README.md', 'w') as f:\n",
|
251 |
+
" f.write(README_TEXT)"
|
252 |
+
],
|
253 |
+
"metadata": {
|
254 |
+
"id": "tEaGfGz0RRMK"
|
255 |
+
},
|
256 |
+
"execution_count": null,
|
257 |
+
"outputs": []
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"source": [
|
262 |
+
"#@markdown Upload the repo to HF!\n",
|
263 |
+
"upload_folder(\n",
|
264 |
+
" folder_path=folder_name,\n",
|
265 |
+
" repo_id=hf_model_slug,\n",
|
266 |
+
" repo_type=\"model\"\n",
|
267 |
+
")"
|
268 |
+
],
|
269 |
+
"metadata": {
|
270 |
+
"id": "_8MGlxgBgKyT"
|
271 |
+
},
|
272 |
+
"execution_count": null,
|
273 |
+
"outputs": []
|
274 |
+
}
|
275 |
+
]
|
276 |
+
}
|