File size: 2,451 Bytes
1c99209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f68e437
1c99209
f68e437
 
 
 
 
 
 
1c99209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f68e437
 
 
 
 
1c99209
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: sentence-transformers/all-mpnet-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: IKT_classifier_conditional_best
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# IKT_classifier_conditional_best

This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5371
- Precision Macro: 0.8714
- Precision Weighted: 0.8713
- Recall Macro: 0.8711
- Recall Weighted: 0.8712
- F1-score: 0.8712
- Accuracy: 0.8712

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4.112924307850544e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400.0
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
| 0.6658        | 1.0   | 698  | 0.7196          | 0.7391          | 0.7381             | 0.7102       | 0.7124          | 0.7028   | 0.7124   |
| 0.6301        | 2.0   | 1396 | 0.4965          | 0.8073          | 0.8075             | 0.8071       | 0.8069          | 0.8069   | 0.8069   |
| 0.5252        | 3.0   | 2094 | 0.5307          | 0.8300          | 0.8297             | 0.8279       | 0.8283          | 0.8279   | 0.8283   |
| 0.3513        | 4.0   | 2792 | 0.5261          | 0.8626          | 0.8627             | 0.8626       | 0.8627          | 0.8626   | 0.8627   |
| 0.2979        | 5.0   | 3490 | 0.5371          | 0.8714          | 0.8713             | 0.8711       | 0.8712          | 0.8712   | 0.8712   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3