File size: 2,451 Bytes
1c99209 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: sentence-transformers/all-mpnet-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: IKT_classifier_conditional_best
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IKT_classifier_conditional_best
This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9766
- Precision Macro: 0.8010
- Precision Weighted: 0.8078
- Recall Macro: 0.7928
- Recall Weighted: 0.8093
- F1-score: 0.7963
- Accuracy: 0.8093
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.112924307850544e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400.0
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
| 0.6562 | 1.0 | 696 | 0.5617 | 0.7283 | 0.7423 | 0.7283 | 0.7423 | 0.7283 | 0.7423 |
| 0.6091 | 2.0 | 1392 | 0.6492 | 0.7345 | 0.7443 | 0.7251 | 0.7474 | 0.7287 | 0.7474 |
| 0.3892 | 3.0 | 2088 | 0.7730 | 0.7848 | 0.7872 | 0.7612 | 0.7887 | 0.7687 | 0.7887 |
| 0.2509 | 4.0 | 2784 | 0.9735 | 0.7778 | 0.7937 | 0.7858 | 0.7887 | 0.7807 | 0.7887 |
| 0.1648 | 5.0 | 3480 | 0.9766 | 0.8010 | 0.8078 | 0.7928 | 0.8093 | 0.7963 | 0.8093 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|