Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
- code
|
| 5 |
+
- coding
|
| 6 |
+
model-index:
|
| 7 |
+
- name: FalCoder
|
| 8 |
+
results: []
|
| 9 |
+
license: apache-2.0
|
| 10 |
+
language:
|
| 11 |
+
- code
|
| 12 |
+
thumbnail: https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png
|
| 13 |
+
datasets:
|
| 14 |
+
- HuggingFaceH4/CodeAlpaca_20K
|
| 15 |
+
pipeline_tag: text-generation
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
<div style="text-align:center;width:250px;height:250px;">
|
| 19 |
+
<img src="https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png" alt="falcoder logo"">
|
| 20 |
+
</div>
|
| 21 |
+
|
| 22 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 23 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 24 |
+
|
| 25 |
+
# LlaMa 2 Coder🦙👩💻
|
| 26 |
+
**LlaMa-2 7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library.
|
| 27 |
+
|
| 28 |
+
## Model description 🧠
|
| 29 |
+
|
| 30 |
+
[Llama-2](https://huggingface.co/tiiuae/falcon-7b)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
## Training and evaluation data 📚
|
| 34 |
+
|
| 35 |
+
[CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K): contains 20K instruction-following data used for fine-tuning the Code Alpaca model.
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
### Training hyperparameters ⚙
|
| 39 |
+
|
| 40 |
+
TBA
|
| 41 |
+
|
| 42 |
+
### Training results 🗒️
|
| 43 |
+
|
| 44 |
+
| Step | Training Loss | Validation Loss |
|
| 45 |
+
|------|---------------|-----------------|
|
| 46 |
+
| 100 | 0.798500 | 0.767996 |
|
| 47 |
+
| 200 | 0.725900 | 0.749880 |
|
| 48 |
+
| 300 | 0.669100 | 0.748029 |
|
| 49 |
+
| 400 | 0.687300 | 0.742342 |
|
| 50 |
+
| 500 | 0.579900 | 0.736735 |
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
### Example of usage 👩💻
|
| 55 |
+
```py
|
| 56 |
+
import torch
|
| 57 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer
|
| 58 |
+
|
| 59 |
+
model_id = "mrm8488/falcoder-7b"
|
| 60 |
+
|
| 61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 62 |
+
|
| 63 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
|
| 64 |
+
|
| 65 |
+
def generate(
|
| 66 |
+
instruction,
|
| 67 |
+
max_new_tokens=128,
|
| 68 |
+
temperature=0.1,
|
| 69 |
+
top_p=0.75,
|
| 70 |
+
top_k=40,
|
| 71 |
+
num_beams=4,
|
| 72 |
+
**kwargs
|
| 73 |
+
):
|
| 74 |
+
prompt = instruction + "\n### Solution:\n"
|
| 75 |
+
print(prompt)
|
| 76 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 77 |
+
input_ids = inputs["input_ids"].to("cuda")
|
| 78 |
+
attention_mask = inputs["attention_mask"].to("cuda")
|
| 79 |
+
generation_config = GenerationConfig(
|
| 80 |
+
temperature=temperature,
|
| 81 |
+
top_p=top_p,
|
| 82 |
+
top_k=top_k,
|
| 83 |
+
num_beams=num_beams,
|
| 84 |
+
**kwargs,
|
| 85 |
+
)
|
| 86 |
+
with torch.no_grad():
|
| 87 |
+
generation_output = model.generate(
|
| 88 |
+
input_ids=input_ids,
|
| 89 |
+
attention_mask=attention_mask,
|
| 90 |
+
generation_config=generation_config,
|
| 91 |
+
return_dict_in_generate=True,
|
| 92 |
+
output_scores=True,
|
| 93 |
+
max_new_tokens=max_new_tokens,
|
| 94 |
+
early_stopping=True
|
| 95 |
+
)
|
| 96 |
+
s = generation_output.sequences[0]
|
| 97 |
+
output = tokenizer.decode(s)
|
| 98 |
+
return output.split("### Solution:")[1].lstrip("\n")
|
| 99 |
+
|
| 100 |
+
instruction = "Design a class for representing a person in Python."
|
| 101 |
+
print(generate(instruction))
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
### Citation
|
| 105 |
+
|