Initial readme
Browse files
README.md
CHANGED
@@ -1,3 +1,165 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model:
|
4 |
+
- GSAI-ML/LLaDA-8B-Instruct
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
---
|
7 |
+
|
8 |
+
Baby's first adventure with the diffusion language model. Had to quantize this so it would fit on a 3080TI - all I've got!
|
9 |
+
|
10 |
+
Used modal to do so:
|
11 |
+
|
12 |
+
```
|
13 |
+
"""
|
14 |
+
This script uses Modal to quantize the LLaDA family of models.
|
15 |
+
|
16 |
+
First, install modal and log into the CLI.
|
17 |
+
|
18 |
+
```
|
19 |
+
uv add modal
|
20 |
+
uv run modal login
|
21 |
+
```
|
22 |
+
|
23 |
+
Then, add an environment and a volume to the project.
|
24 |
+
|
25 |
+
```
|
26 |
+
uv run modal volume create quantized-model-output
|
27 |
+
```
|
28 |
+
|
29 |
+
Then, run the quantization script:
|
30 |
+
|
31 |
+
```
|
32 |
+
uv run modal run scripts/quantize_llada.py
|
33 |
+
```
|
34 |
+
"""
|
35 |
+
|
36 |
+
import modal
|
37 |
+
|
38 |
+
image = (
|
39 |
+
modal.Image.from_registry("nvidia/cuda:12.8.1-cudnn-runtime-ubuntu24.04", add_python="3.13")
|
40 |
+
.apt_install("git", "curl")
|
41 |
+
.pip_install(
|
42 |
+
"torch>=2.7.0",
|
43 |
+
"torchvision",
|
44 |
+
"torchaudio",
|
45 |
+
index_url="https://download.pytorch.org/whl/cu128",
|
46 |
+
)
|
47 |
+
.pip_install(
|
48 |
+
"numpy",
|
49 |
+
"accelerate",
|
50 |
+
"optimum",
|
51 |
+
"loguru",
|
52 |
+
"transformers",
|
53 |
+
)
|
54 |
+
.pip_install("triton")
|
55 |
+
.pip_install("gptqmodel")
|
56 |
+
)
|
57 |
+
|
58 |
+
# These need to be created before running the app:
|
59 |
+
# uv run modal volume create quantized-model-output
|
60 |
+
output_volume = modal.Volume.from_name("quantized-model-output")
|
61 |
+
volume_config = {"/quantized-model-output": output_volume}
|
62 |
+
|
63 |
+
app = modal.App("quantize-llada", image=image, volumes=volume_config)
|
64 |
+
|
65 |
+
TRAIN_GPU_COUNT = 1
|
66 |
+
TRAIN_GPU = f"B200:{TRAIN_GPU_COUNT}"
|
67 |
+
TRAIN_CPU_COUNT = 4
|
68 |
+
MINUTES = 40
|
69 |
+
|
70 |
+
|
71 |
+
@app.function(gpu=TRAIN_GPU, cpu=TRAIN_CPU_COUNT, timeout=MINUTES * 60)
|
72 |
+
def quantize_model() -> None:
|
73 |
+
import types
|
74 |
+
|
75 |
+
import torch
|
76 |
+
from loguru import logger
|
77 |
+
from optimum.gptq import GPTQQuantizer
|
78 |
+
from transformers import AutoModel, AutoTokenizer
|
79 |
+
|
80 |
+
output_volume.reload()
|
81 |
+
|
82 |
+
# Check if CUDA is available, show device count
|
83 |
+
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
84 |
+
logger.info(f"Device count: {torch.cuda.device_count() if torch.cuda.is_available() else 0}")
|
85 |
+
logger.info(f"GPU: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'None'}")
|
86 |
+
logger.info(f"CUDA version: {torch.version.cuda}")
|
87 |
+
logger.info(f"PyTorch version: {torch.__version__}")
|
88 |
+
|
89 |
+
# Check if GPU is available
|
90 |
+
if not torch.cuda.is_available():
|
91 |
+
raise RuntimeError("CUDA is not available")
|
92 |
+
|
93 |
+
logger.info("Loading tokenizer...")
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained("GSAI-ML/LLaDA-8B-Instruct", trust_remote_code=True)
|
95 |
+
|
96 |
+
# We need to do some shenanigans.
|
97 |
+
# First, load the model on the CPU so we can patch the forward pass.
|
98 |
+
logger.info("Loading model on CPU...")
|
99 |
+
model = AutoModel.from_pretrained(
|
100 |
+
"GSAI-ML/LLaDA-8B-Instruct",
|
101 |
+
trust_remote_code=True,
|
102 |
+
device_map="cpu",
|
103 |
+
torch_dtype=torch.float16,
|
104 |
+
low_cpu_mem_usage=True,
|
105 |
+
)
|
106 |
+
logger.info("Patching model forward pass...")
|
107 |
+
|
108 |
+
def patched_forward(self, x, *args, attention_bias=None, layer_past=None, use_cache=False, **kwargs):
|
109 |
+
"""
|
110 |
+
Patched forward that handles both positional and keyword arguments for attention_bias
|
111 |
+
"""
|
112 |
+
# If attention_bias was passed as positional argument, use it
|
113 |
+
if len(args) > 0 and attention_bias is None:
|
114 |
+
attention_bias = args[0]
|
115 |
+
args = args[1:]
|
116 |
+
if len(args) > 0 and layer_past is None:
|
117 |
+
layer_past = args[0]
|
118 |
+
args = args[1:]
|
119 |
+
if len(args) > 0:
|
120 |
+
use_cache = args[0]
|
121 |
+
|
122 |
+
# Call the original forward with cleaned arguments
|
123 |
+
return self._original_forward(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
|
124 |
+
|
125 |
+
# Apply patch to all LLaDALlamaBlock instances
|
126 |
+
for name, module in model.named_modules():
|
127 |
+
if module.__class__.__name__ == "LLaDALlamaBlock":
|
128 |
+
# Store original forward
|
129 |
+
module._original_forward = module.forward
|
130 |
+
# Replace with patched version
|
131 |
+
module.forward = types.MethodType(patched_forward, module)
|
132 |
+
logger.info(f"Patched {name}")
|
133 |
+
|
134 |
+
# Move model to GPU
|
135 |
+
logger.info("Moving model to GPU...")
|
136 |
+
model = model.to("cuda")
|
137 |
+
|
138 |
+
logger.info("Setting up GPTQ quantizer...")
|
139 |
+
quantizer = GPTQQuantizer(
|
140 |
+
bits=4,
|
141 |
+
group_size=128,
|
142 |
+
desc_act=False,
|
143 |
+
sym=True,
|
144 |
+
true_sequential=True,
|
145 |
+
dataset="c4",
|
146 |
+
tokenizer=tokenizer,
|
147 |
+
block_name_to_quantize="model.transformer.blocks",
|
148 |
+
)
|
149 |
+
|
150 |
+
logger.info("Quantizing model...")
|
151 |
+
quantizer.quantize_model(model, tokenizer)
|
152 |
+
|
153 |
+
logger.info("Quantization done, saving model...")
|
154 |
+
output_path = "/quantized-model-output/llada-8b-instruct-4bit-gptq"
|
155 |
+
logger.info(f"Saving model to {output_path}")
|
156 |
+
quantizer.save(model, output_path)
|
157 |
+
tokenizer.save_pretrained(output_path)
|
158 |
+
|
159 |
+
logger.success("Quantization done, model saved!")
|
160 |
+
|
161 |
+
|
162 |
+
@app.local_entrypoint()
|
163 |
+
def main():
|
164 |
+
quantize_model.remote()
|
165 |
+
```
|