update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- summarization
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
metrics:
|
| 7 |
+
- rouge
|
| 8 |
+
model-index:
|
| 9 |
+
- name: mt5-small-text-sum-7
|
| 10 |
+
results: []
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 14 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 15 |
+
|
| 16 |
+
# mt5-small-text-sum-7
|
| 17 |
+
|
| 18 |
+
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
|
| 19 |
+
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 2.3801
|
| 21 |
+
- Rouge1: 20.58
|
| 22 |
+
- Rouge2: 6.51
|
| 23 |
+
- Rougel: 20.26
|
| 24 |
+
|
| 25 |
+
## Model description
|
| 26 |
+
|
| 27 |
+
More information needed
|
| 28 |
+
|
| 29 |
+
## Intended uses & limitations
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Training and evaluation data
|
| 34 |
+
|
| 35 |
+
More information needed
|
| 36 |
+
|
| 37 |
+
## Training procedure
|
| 38 |
+
|
| 39 |
+
### Training hyperparameters
|
| 40 |
+
|
| 41 |
+
The following hyperparameters were used during training:
|
| 42 |
+
- learning_rate: 0.0001
|
| 43 |
+
- train_batch_size: 13
|
| 44 |
+
- eval_batch_size: 13
|
| 45 |
+
- seed: 42
|
| 46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 47 |
+
- lr_scheduler_type: linear
|
| 48 |
+
- num_epochs: 40
|
| 49 |
+
|
| 50 |
+
### Training results
|
| 51 |
+
|
| 52 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel |
|
| 53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
|
| 54 |
+
| 4.4436 | 2.09 | 500 | 2.5528 | 17.73 | 5.9 | 17.55 |
|
| 55 |
+
| 3.0439 | 4.18 | 1000 | 2.4974 | 18.76 | 5.73 | 18.64 |
|
| 56 |
+
| 2.822 | 6.28 | 1500 | 2.4043 | 17.82 | 5.09 | 17.68 |
|
| 57 |
+
| 2.6799 | 8.37 | 2000 | 2.3938 | 18.9 | 5.73 | 18.62 |
|
| 58 |
+
| 2.5687 | 10.46 | 2500 | 2.3617 | 19.0 | 5.76 | 18.73 |
|
| 59 |
+
| 2.4701 | 12.55 | 3000 | 2.3455 | 19.82 | 6.14 | 19.54 |
|
| 60 |
+
| 2.3917 | 14.64 | 3500 | 2.3801 | 20.58 | 6.51 | 20.26 |
|
| 61 |
+
| 2.3427 | 16.74 | 4000 | 2.3407 | 19.52 | 6.49 | 19.23 |
|
| 62 |
+
| 2.2811 | 18.83 | 4500 | 2.3544 | 18.82 | 5.75 | 18.43 |
|
| 63 |
+
| 2.2347 | 20.92 | 5000 | 2.3503 | 20.17 | 6.08 | 19.76 |
|
| 64 |
+
| 2.1884 | 23.01 | 5500 | 2.3586 | 20.25 | 6.06 | 19.9 |
|
| 65 |
+
| 2.1414 | 25.1 | 6000 | 2.3507 | 19.94 | 6.31 | 19.61 |
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
### Framework versions
|
| 69 |
+
|
| 70 |
+
- Transformers 4.26.1
|
| 71 |
+
- Pytorch 1.13.1+cu116
|
| 72 |
+
- Datasets 2.10.1
|
| 73 |
+
- Tokenizers 0.13.2
|