Add notebook examples for structured outputs and function calling
Browse filesThese notebooks demonstrate to the community how they can use `Kimi-K2-Instruct ` for structured outputs and function calling.
- function_calling.ipynb +325 -0
- structured_outputs.ipynb +198 -0
function_calling.ipynb
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "eec74b22",
|
6 |
+
"metadata": {
|
7 |
+
"vscode": {
|
8 |
+
"languageId": "raw"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"source": [
|
12 |
+
"# Function Calling with Hugging Face Inference Providers\n",
|
13 |
+
"\n",
|
14 |
+
"This notebook demonstrates how to use function calling with both OpenAI-compatible and Hugging Face native clients using Hugging Face Inference Providers.\n",
|
15 |
+
"\n",
|
16 |
+
"## Overview\n",
|
17 |
+
"- **OpenAI-Compatible**: Use familiar OpenAI API syntax with HF Inference Providers\n",
|
18 |
+
"- **Hugging Face Native**: Use HF's native InferenceClient with function calling\n",
|
19 |
+
"- **Shared Functions**: Reusable function definitions and schemas across both approaches\n",
|
20 |
+
"\n",
|
21 |
+
"## Installation\n",
|
22 |
+
"\n",
|
23 |
+
"First, install the required dependencies:\n"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"id": "f23485bd",
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"%pip install openai huggingface-hub python-dotenv\n"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 1,
|
39 |
+
"id": "e39a23ae",
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [
|
42 |
+
{
|
43 |
+
"name": "stderr",
|
44 |
+
"output_type": "stream",
|
45 |
+
"text": [
|
46 |
+
"/Users/ben/code/inference-providers-mcp/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
47 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
48 |
+
]
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"source": [
|
52 |
+
"import json\n",
|
53 |
+
"import os\n",
|
54 |
+
"from typing import Dict, Any, Optional\n",
|
55 |
+
"from openai import OpenAI\n",
|
56 |
+
"from huggingface_hub import InferenceClient\n",
|
57 |
+
"from dotenv import load_dotenv\n",
|
58 |
+
"\n",
|
59 |
+
"# Load environment variables\n",
|
60 |
+
"load_dotenv()\n",
|
61 |
+
"\n",
|
62 |
+
"# Create a shared configuration\n",
|
63 |
+
"HF_TOKEN = os.getenv(\"HF_TOKEN\")\n"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "markdown",
|
68 |
+
"id": "0b45612f",
|
69 |
+
"metadata": {},
|
70 |
+
"source": [
|
71 |
+
"# Define some functions"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": null,
|
77 |
+
"id": "5cd13326",
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [],
|
80 |
+
"source": [
|
81 |
+
"# Shared function definitions (mock weather API)\n",
|
82 |
+
"def get_current_weather(location: str) -> Dict[str, Any]:\n",
|
83 |
+
" \"\"\"Get current weather information for a location.\"\"\"\n",
|
84 |
+
" return {\n",
|
85 |
+
" \"location\": location,\n",
|
86 |
+
" \"temperature\": \"22°C\",\n",
|
87 |
+
" \"condition\": \"Sunny\",\n",
|
88 |
+
" \"humidity\": \"65%\",\n",
|
89 |
+
" \"wind_speed\": \"5 km/h\",\n",
|
90 |
+
" }\n",
|
91 |
+
"\n",
|
92 |
+
"\n",
|
93 |
+
"def get_weather_forecast(location: str, date: str) -> Dict[str, Any]:\n",
|
94 |
+
" \"\"\"Get weather forecast for a location on a specific date.\"\"\"\n",
|
95 |
+
" return {\n",
|
96 |
+
" \"location\": location,\n",
|
97 |
+
" \"date\": date,\n",
|
98 |
+
" \"forecast\": \"Sunny with a chance of rain\",\n",
|
99 |
+
" \"temperature\": \"20°C\",\n",
|
100 |
+
" \"humidity\": \"70%\",\n",
|
101 |
+
" }\n",
|
102 |
+
"\n",
|
103 |
+
"\n",
|
104 |
+
"# Available functions registry\n",
|
105 |
+
"AVAILABLE_FUNCTIONS = {\n",
|
106 |
+
" \"get_current_weather\": get_current_weather,\n",
|
107 |
+
" \"get_weather_forecast\": get_weather_forecast,\n",
|
108 |
+
"}\n",
|
109 |
+
"\n",
|
110 |
+
"# Shared tool schemas (compatible with both OpenAI and HF)\n",
|
111 |
+
"TOOL_SCHEMAS = [\n",
|
112 |
+
" {\n",
|
113 |
+
" \"type\": \"function\",\n",
|
114 |
+
" \"function\": {\n",
|
115 |
+
" \"name\": \"get_current_weather\",\n",
|
116 |
+
" \"description\": \"Get current weather information for a location\",\n",
|
117 |
+
" \"parameters\": {\n",
|
118 |
+
" \"type\": \"object\",\n",
|
119 |
+
" \"properties\": {\n",
|
120 |
+
" \"location\": {\n",
|
121 |
+
" \"type\": \"string\",\n",
|
122 |
+
" \"description\": \"City and country (e.g., 'Paris, France')\",\n",
|
123 |
+
" }\n",
|
124 |
+
" },\n",
|
125 |
+
" \"required\": [\"location\"],\n",
|
126 |
+
" },\n",
|
127 |
+
" },\n",
|
128 |
+
" },\n",
|
129 |
+
" {\n",
|
130 |
+
" \"type\": \"function\",\n",
|
131 |
+
" \"function\": {\n",
|
132 |
+
" \"name\": \"get_weather_forecast\",\n",
|
133 |
+
" \"description\": \"Get weather forecast for a location on a specific date\",\n",
|
134 |
+
" \"parameters\": {\n",
|
135 |
+
" \"type\": \"object\",\n",
|
136 |
+
" \"properties\": {\n",
|
137 |
+
" \"location\": {\n",
|
138 |
+
" \"type\": \"string\",\n",
|
139 |
+
" \"description\": \"City and country (e.g., 'London, UK')\",\n",
|
140 |
+
" },\n",
|
141 |
+
" \"date\": {\n",
|
142 |
+
" \"type\": \"string\",\n",
|
143 |
+
" \"description\": \"Date in YYYY-MM-DD format\",\n",
|
144 |
+
" },\n",
|
145 |
+
" },\n",
|
146 |
+
" \"required\": [\"location\", \"date\"],\n",
|
147 |
+
" },\n",
|
148 |
+
" },\n",
|
149 |
+
" },\n",
|
150 |
+
"]\n"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "markdown",
|
155 |
+
"id": "f48298c3",
|
156 |
+
"metadata": {},
|
157 |
+
"source": [
|
158 |
+
"# Implement a Function Calling app"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": 13,
|
164 |
+
"id": "7c4b21dc",
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"SYSTEM_PROMPT = \"\"\"\n",
|
169 |
+
"You are a helpful assistant that can answer questions and help with tasks.\n",
|
170 |
+
"\"\"\""
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": null,
|
176 |
+
"id": "775ae07e",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"def process_function_calls(response_message, messages):\n",
|
181 |
+
" \"\"\"Process function calls and return updated messages.\"\"\"\n",
|
182 |
+
" if not response_message.tool_calls:\n",
|
183 |
+
" return messages, False\n",
|
184 |
+
"\n",
|
185 |
+
" # Add assistant's response to messages\n",
|
186 |
+
" messages.append(response_message)\n",
|
187 |
+
"\n",
|
188 |
+
" # Process each tool call\n",
|
189 |
+
" for tool_call in response_message.tool_calls:\n",
|
190 |
+
" function_name = tool_call.function.name\n",
|
191 |
+
" function_args = json.loads(tool_call.function.arguments)\n",
|
192 |
+
"\n",
|
193 |
+
" print(f\"🔧 Calling: {function_name}\")\n",
|
194 |
+
" print(f\"📝 Args: {function_args}\")\n",
|
195 |
+
"\n",
|
196 |
+
" # Call the function\n",
|
197 |
+
" if function_name in AVAILABLE_FUNCTIONS:\n",
|
198 |
+
" func = AVAILABLE_FUNCTIONS[function_name]\n",
|
199 |
+
" result = func(**function_args)\n",
|
200 |
+
" print(f\"✅ Result: {result}\")\n",
|
201 |
+
"\n",
|
202 |
+
" # Add function result to messages\n",
|
203 |
+
" messages.append(\n",
|
204 |
+
" {\n",
|
205 |
+
" \"tool_call_id\": tool_call.id,\n",
|
206 |
+
" \"role\": \"tool\",\n",
|
207 |
+
" \"name\": function_name,\n",
|
208 |
+
" \"content\": json.dumps(result),\n",
|
209 |
+
" }\n",
|
210 |
+
" )\n",
|
211 |
+
" else:\n",
|
212 |
+
" print(f\"❌ Function {function_name} not found\")\n",
|
213 |
+
"\n",
|
214 |
+
" return messages, True\n",
|
215 |
+
"\n",
|
216 |
+
"\n",
|
217 |
+
"def chat_with_functions(user_message, client, model) -> str:\n",
|
218 |
+
" \"\"\"Unified function calling handler for both OpenAI and HF clients.\"\"\"\n",
|
219 |
+
" messages = [\n",
|
220 |
+
" {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n",
|
221 |
+
" {\"role\": \"user\", \"content\": user_message},\n",
|
222 |
+
" ]\n",
|
223 |
+
"\n",
|
224 |
+
" # Initial API call\n",
|
225 |
+
" response = client.chat.completions.create(\n",
|
226 |
+
" model=model,\n",
|
227 |
+
" messages=messages,\n",
|
228 |
+
" tools=TOOL_SCHEMAS,\n",
|
229 |
+
" tool_choice=\"auto\",\n",
|
230 |
+
" )\n",
|
231 |
+
"\n",
|
232 |
+
" response_message = response.choices[0].message\n",
|
233 |
+
"\n",
|
234 |
+
" # Process function calls if any\n",
|
235 |
+
" messages, had_tool_calls = process_function_calls(response_message, messages)\n",
|
236 |
+
"\n",
|
237 |
+
" if had_tool_calls:\n",
|
238 |
+
" # Get final response after function calls\n",
|
239 |
+
" final_response = client.chat.completions.create(\n",
|
240 |
+
" model=model,\n",
|
241 |
+
" messages=messages,\n",
|
242 |
+
" tools=TOOL_SCHEMAS,\n",
|
243 |
+
" tool_choice=\"auto\",\n",
|
244 |
+
" )\n",
|
245 |
+
" final_content = final_response.choices[0].message.content\n",
|
246 |
+
" else:\n",
|
247 |
+
" final_content = response_message.content\n",
|
248 |
+
"\n",
|
249 |
+
" return final_content\n"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"execution_count": 8,
|
255 |
+
"id": "8b26419b",
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [],
|
258 |
+
"source": [
|
259 |
+
"client = OpenAI(\n",
|
260 |
+
" api_key=HF_TOKEN,\n",
|
261 |
+
" base_url=\"https://router.huggingface.co/groq/openai/v1\",\n",
|
262 |
+
")\n",
|
263 |
+
"\n",
|
264 |
+
"if False:\n",
|
265 |
+
" # Initialize HF client with inference provider\n",
|
266 |
+
" client = InferenceClient(provider=\"groq\")"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "markdown",
|
271 |
+
"id": "c410bafc",
|
272 |
+
"metadata": {},
|
273 |
+
"source": [
|
274 |
+
"# Demo!"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "code",
|
279 |
+
"execution_count": 14,
|
280 |
+
"id": "32ee9713",
|
281 |
+
"metadata": {},
|
282 |
+
"outputs": [
|
283 |
+
{
|
284 |
+
"name": "stdout",
|
285 |
+
"output_type": "stream",
|
286 |
+
"text": [
|
287 |
+
"🔧 Calling: get_current_weather\n",
|
288 |
+
"📝 Args: {'location': 'Berlin, Germany'}\n",
|
289 |
+
"✅ Result: {'location': 'Berlin, Germany', 'temperature': '22°C', 'condition': 'Sunny', 'humidity': '65%', 'wind_speed': '5 km/h'}\n"
|
290 |
+
]
|
291 |
+
}
|
292 |
+
],
|
293 |
+
"source": [
|
294 |
+
"query = \"What's the current weather in Berlin?\"\n",
|
295 |
+
"\n",
|
296 |
+
"response = chat_with_functions(\n",
|
297 |
+
" user_message=query,\n",
|
298 |
+
" client=client,\n",
|
299 |
+
" model=\"moonshotai/kimi-k2-instruct\",\n",
|
300 |
+
")"
|
301 |
+
]
|
302 |
+
}
|
303 |
+
],
|
304 |
+
"metadata": {
|
305 |
+
"kernelspec": {
|
306 |
+
"display_name": ".venv",
|
307 |
+
"language": "python",
|
308 |
+
"name": "python3"
|
309 |
+
},
|
310 |
+
"language_info": {
|
311 |
+
"codemirror_mode": {
|
312 |
+
"name": "ipython",
|
313 |
+
"version": 3
|
314 |
+
},
|
315 |
+
"file_extension": ".py",
|
316 |
+
"mimetype": "text/x-python",
|
317 |
+
"name": "python",
|
318 |
+
"nbconvert_exporter": "python",
|
319 |
+
"pygments_lexer": "ipython3",
|
320 |
+
"version": "3.11.10"
|
321 |
+
}
|
322 |
+
},
|
323 |
+
"nbformat": 4,
|
324 |
+
"nbformat_minor": 5
|
325 |
+
}
|
structured_outputs.ipynb
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "43a342b3",
|
6 |
+
"metadata": {
|
7 |
+
"vscode": {
|
8 |
+
"languageId": "raw"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"source": [
|
12 |
+
"# Structured Outputs with Hugging Face Inference Providers\n",
|
13 |
+
"\n",
|
14 |
+
"This notebook demonstrates how to use structured outputs with both OpenAI-compatible and Hugging Face native clients using Hugging Face Inference Providers.\n",
|
15 |
+
"\n",
|
16 |
+
"## Overview\n",
|
17 |
+
"- **OpenAI-Compatible**: Use familiar OpenAI structured outputs with HF Inference Providers\n",
|
18 |
+
"- **Hugging Face Native**: Use HF's native InferenceClient with JSON schema validation\n",
|
19 |
+
"- **Shared Models**: Reusable Pydantic models and schemas across both approaches\n",
|
20 |
+
"- **Guaranteed Structure**: Ensure responses match your defined schemas\n",
|
21 |
+
"\n",
|
22 |
+
"## Installation\n",
|
23 |
+
"\n",
|
24 |
+
"First, install the required dependencies:\n"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 16,
|
30 |
+
"id": "7071d771",
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"# %pip install openai huggingface-hub pydantic python-dotenv"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"id": "7323b5fb",
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"import os\n",
|
45 |
+
"import json\n",
|
46 |
+
"from typing import Dict, Any, List, Optional\n",
|
47 |
+
"from openai import OpenAI\n",
|
48 |
+
"from huggingface_hub import InferenceClient\n",
|
49 |
+
"from pydantic import BaseModel, Field\n",
|
50 |
+
"from dotenv import load_dotenv\n",
|
51 |
+
"\n",
|
52 |
+
"# Load environment variables\n",
|
53 |
+
"load_dotenv()\n",
|
54 |
+
"\n",
|
55 |
+
"# Create a shared configuration\n",
|
56 |
+
"HF_TOKEN = os.getenv(\"HF_TOKEN\")"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "markdown",
|
61 |
+
"id": "abbe98f5",
|
62 |
+
"metadata": {},
|
63 |
+
"source": [
|
64 |
+
"# Structured Outputs Task\n",
|
65 |
+
"\n",
|
66 |
+
"Let's setup a structured output task like analysing a research paper and returning a structured output."
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 18,
|
72 |
+
"id": "2c1799a9",
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"# Shared Pydantic Models and Sample Data\n",
|
77 |
+
"\n",
|
78 |
+
"# Define structured output models\n",
|
79 |
+
"class PaperAnalysis(BaseModel):\n",
|
80 |
+
" \"\"\"Analysis of a research paper.\"\"\"\n",
|
81 |
+
"\n",
|
82 |
+
" title: str = Field(description=\"The title of the paper\")\n",
|
83 |
+
" abstract_summary: str = Field(description=\"A concise summary of the abstract\")\n",
|
84 |
+
" main_contributions: List[str] = Field(description=\"Key contributions of the paper\")\n",
|
85 |
+
" methodology: str = Field(description=\"Brief description of the methodology used\")\n",
|
86 |
+
"\n",
|
87 |
+
"\n",
|
88 |
+
"# Sample data for testing\n",
|
89 |
+
"SAMPLE_PAPER = \"\"\"Title: Attention Is All You Need\n",
|
90 |
+
"\n",
|
91 |
+
"Abstract: The dominant sequence transduction models are based on complex recurrent \n",
|
92 |
+
"or convolutional neural networks that include an encoder and a decoder. The best \n",
|
93 |
+
"performing models also connect the encoder and decoder through an attention mechanism. \n",
|
94 |
+
"We propose a new simple network architecture, the Transformer, based solely on \n",
|
95 |
+
"attention mechanisms, dispensing with recurrence and convolutions entirely. \n",
|
96 |
+
"Experiments on two machine translation tasks show these models to be superior \n",
|
97 |
+
"in quality while being more parallelizable and requiring significantly less time to train.\n",
|
98 |
+
"\n",
|
99 |
+
"Introduction: Recurrent neural networks, long short-term memory and gated recurrent \n",
|
100 |
+
"neural networks in particular, have been firmly established as state of the art approaches \n",
|
101 |
+
"in sequence modeling and transduction problems such as language modeling and machine translation.\n",
|
102 |
+
"The Transformer architecture introduces multi-head attention mechanisms that allow the model\n",
|
103 |
+
"to jointly attend to information from different representation subspaces.\"\"\"\n"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "markdown",
|
108 |
+
"id": "d4cd793c",
|
109 |
+
"metadata": {},
|
110 |
+
"source": [
|
111 |
+
"# Demo!"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": null,
|
117 |
+
"id": "b82ca76b",
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [],
|
120 |
+
"source": [
|
121 |
+
"# Unified Structured Output Handler\n",
|
122 |
+
"system_prompt = \"Analyze the research paper and extract structured information about its title, abstract, contributions, and methodology.\"\n",
|
123 |
+
"\n",
|
124 |
+
"client = OpenAI(\n",
|
125 |
+
" api_key=HF_TOKEN,\n",
|
126 |
+
" base_url=\"https://router.huggingface.co/novita/v3/openai\",\n",
|
127 |
+
")\n",
|
128 |
+
"\n",
|
129 |
+
"\n",
|
130 |
+
"def get_structured_output(content: str) -> Any:\n",
|
131 |
+
" \"\"\"Get structured output using OpenAI-compatible client.\"\"\"\n",
|
132 |
+
"\n",
|
133 |
+
" messages = [\n",
|
134 |
+
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
135 |
+
" {\"role\": \"user\", \"content\": content},\n",
|
136 |
+
" ]\n",
|
137 |
+
"\n",
|
138 |
+
" # Use OpenAI's structured output parsing\n",
|
139 |
+
" completion = client.beta.chat.completions.parse(\n",
|
140 |
+
" model=\"moonshotai/kimi-k2-instruct\",\n",
|
141 |
+
" messages=messages,\n",
|
142 |
+
" response_format=PaperAnalysis,\n",
|
143 |
+
" )\n",
|
144 |
+
"\n",
|
145 |
+
" return completion.choices[0].message.parsed\n"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": 26,
|
151 |
+
"id": "8519e939",
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [
|
154 |
+
{
|
155 |
+
"name": "stdout",
|
156 |
+
"output_type": "stream",
|
157 |
+
"text": [
|
158 |
+
"📄 Title: Attention Is All You Need\n",
|
159 |
+
"📝 Summary: Proposes the Transformer architecture, a sequence-to-sequence model that replaces all recurrence and convolution with attention mechanisms. Demonstrates state-of-the-art results on machine-translation benchmarks while being more parallelizable and faster to train.\n",
|
160 |
+
"🎯 Contributions: ['Introduces the Transformer architecture, the first transduction model built entirely on attention, eliminating recurrence and convolution.', 'Presents multi-head self-attention to jointly attend to information from different representation subspaces.', 'Shows that attention-only models outperform RNN/CNN baselines in translation quality while offering better parallelization and shorter training times.']\n",
|
161 |
+
"🔬 Methodology: Designs an encoder-decoder architecture composed solely of stacked self-attention and feed-forward layers. Uses multi-head scaled dot-product attention, positional encodings, and residual connections. Evaluates on WMT 2014 English-to-German and English-to-French translation tasks, comparing against previous RNN/CNN-based systems.\n"
|
162 |
+
]
|
163 |
+
}
|
164 |
+
],
|
165 |
+
"source": [
|
166 |
+
"paper_analysis = get_structured_output(\n",
|
167 |
+
" content=SAMPLE_PAPER,\n",
|
168 |
+
")\n",
|
169 |
+
"\n",
|
170 |
+
"print(f\"📄 Title: {paper_analysis.title}\")\n",
|
171 |
+
"print(f\"📝 Summary: {paper_analysis.abstract_summary}\")\n",
|
172 |
+
"print(f\"🎯 Contributions: {paper_analysis.main_contributions}\")\n",
|
173 |
+
"print(f\"🔬 Methodology: {paper_analysis.methodology}\")\n"
|
174 |
+
]
|
175 |
+
}
|
176 |
+
],
|
177 |
+
"metadata": {
|
178 |
+
"kernelspec": {
|
179 |
+
"display_name": ".venv",
|
180 |
+
"language": "python",
|
181 |
+
"name": "python3"
|
182 |
+
},
|
183 |
+
"language_info": {
|
184 |
+
"codemirror_mode": {
|
185 |
+
"name": "ipython",
|
186 |
+
"version": 3
|
187 |
+
},
|
188 |
+
"file_extension": ".py",
|
189 |
+
"mimetype": "text/x-python",
|
190 |
+
"name": "python",
|
191 |
+
"nbconvert_exporter": "python",
|
192 |
+
"pygments_lexer": "ipython3",
|
193 |
+
"version": "3.11.10"
|
194 |
+
}
|
195 |
+
},
|
196 |
+
"nbformat": 4,
|
197 |
+
"nbformat_minor": 5
|
198 |
+
}
|