Upload 14 files
Browse files- .gitattributes +5 -0
- README.md +858 -0
- added_tokens.json +3 -0
- config.json +41 -0
- generation_config.json +7 -0
- gitattributes +36 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +610 -0
- preprocessor_config.json +40 -0
- special_tokens_map.json +33 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +1764 -0
.gitattributes
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model-00001-of-00003.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
model-00002-of-00003.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
model-00003-of-00003.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
tokenizer.model filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,858 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: gemma
|
| 4 |
+
pipeline_tag: image-text-to-text
|
| 5 |
+
extra_gated_heading: Access PaliGemma on Hugging Face
|
| 6 |
+
extra_gated_prompt: To access PaliGemma on Hugging Face, you’re required to review
|
| 7 |
+
and agree to Google’s usage license. To do this, please ensure you’re logged-in
|
| 8 |
+
to Hugging Face and click below. Requests are processed immediately.
|
| 9 |
+
extra_gated_button_content: Acknowledge license
|
| 10 |
+
---
|
| 11 |
+
# PaliGemma model card
|
| 12 |
+
|
| 13 |
+
**Model page:** [PaliGemma](https://ai.google.dev/gemma/docs/paligemma)
|
| 14 |
+
|
| 15 |
+
Transformers PaliGemma 3B weights, fine-tuned with 448*448 input images and 512 token input/output text sequences on a mixture of downstream academic datasets. The models are available in float32, bfloat16 and float16 format for research purposes only.
|
| 16 |
+
|
| 17 |
+
**Resources and technical documentation:**
|
| 18 |
+
|
| 19 |
+
* [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
|
| 20 |
+
* [PaliGemma on Kaggle](https://www.kaggle.com/models/google/paligemma)
|
| 21 |
+
* [PaliGemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/363)
|
| 22 |
+
|
| 23 |
+
**Terms of Use:** [Terms](https://www.kaggle.com/models/google/paligemma/license/consent/verify/huggingface?returnModelRepoId=google/paligemma-3b-mix-448)
|
| 24 |
+
|
| 25 |
+
**Authors:** Google
|
| 26 |
+
|
| 27 |
+
## Model information
|
| 28 |
+
|
| 29 |
+
### Model summary
|
| 30 |
+
|
| 31 |
+
#### Description
|
| 32 |
+
|
| 33 |
+
PaliGemma is a versatile and lightweight vision-language model (VLM) inspired by
|
| 34 |
+
[PaLI-3](https://arxiv.org/abs/2310.09199) and based on open components such as
|
| 35 |
+
the [SigLIP vision model](https://arxiv.org/abs/2303.15343) and the [Gemma
|
| 36 |
+
language model](https://arxiv.org/abs/2403.08295). It takes both image and text
|
| 37 |
+
as input and generates text as output, supporting multiple languages. It is designed for class-leading fine-tune performance on a wide range of vision-language tasks such as image and short video caption, visual question answering, text reading, object detection and object segmentation.
|
| 38 |
+
|
| 39 |
+
#### Model architecture
|
| 40 |
+
|
| 41 |
+
PaliGemma is the composition of a [Transformer
|
| 42 |
+
decoder](https://arxiv.org/abs/1706.03762) and a [Vision Transformer image
|
| 43 |
+
encoder](https://arxiv.org/abs/2010.11929), with a total of 3 billion
|
| 44 |
+
params. The text decoder is initialized from
|
| 45 |
+
[Gemma-2B](https://www.kaggle.com/models/google/gemma). The image encoder is
|
| 46 |
+
initialized from
|
| 47 |
+
[SigLIP-So400m/14](https://colab.research.google.com/github/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/SigLIP_demo.ipynb).
|
| 48 |
+
PaliGemma is trained following the PaLI-3 recipes.
|
| 49 |
+
|
| 50 |
+
#### Inputs and outputs
|
| 51 |
+
|
| 52 |
+
* **Input:** Image and text string, such as a prompt to caption the image, or
|
| 53 |
+
a question.
|
| 54 |
+
* **Output:** Generated text in response to the input, such as a caption of
|
| 55 |
+
the image, an answer to a question, a list of object bounding box
|
| 56 |
+
coordinates, or segmentation codewords.
|
| 57 |
+
|
| 58 |
+
### Model data
|
| 59 |
+
|
| 60 |
+
#### Pre-train datasets
|
| 61 |
+
|
| 62 |
+
PaliGemma is pre-trained on the following mixture of datasets:
|
| 63 |
+
|
| 64 |
+
* **WebLI:** [WebLI (Web Language Image)](https://arxiv.org/abs/2209.06794) is
|
| 65 |
+
a web-scale multilingual image-text dataset built from the public web. A
|
| 66 |
+
wide range of WebLI splits are used to acquire versatile model capabilities,
|
| 67 |
+
such as visual semantic understanding, object localization,
|
| 68 |
+
visually-situated text understanding, multilinguality, etc.
|
| 69 |
+
* **CC3M-35L:** Curated English image-alt_text pairs from webpages ([Sharma et
|
| 70 |
+
al., 2018](https://aclanthology.org/P18-1238/)). We used the [Google Cloud
|
| 71 |
+
Translation API](https://cloud.google.com/translate) to translate into 34
|
| 72 |
+
additional languages.
|
| 73 |
+
* **VQ²A-CC3M-35L/VQG-CC3M-35L:** A subset of VQ2A-CC3M ([Changpinyo et al.,
|
| 74 |
+
2022a](https://aclanthology.org/2022.naacl-main.142/)), translated into the
|
| 75 |
+
same additional 34 languages as CC3M-35L, using the [Google Cloud
|
| 76 |
+
Translation API](https://cloud.google.com/translate).
|
| 77 |
+
* **OpenImages:** Detection and object-aware questions and answers
|
| 78 |
+
([Piergiovanni et al. 2022](https://arxiv.org/abs/2209.04372)) generated by
|
| 79 |
+
handcrafted rules on the [OpenImages dataset].
|
| 80 |
+
* **WIT:** Images and texts collected from Wikipedia ([Srinivasan et al.,
|
| 81 |
+
2021](https://arxiv.org/abs/2103.01913)).
|
| 82 |
+
|
| 83 |
+
[OpenImages dataset]: https://storage.googleapis.com/openimages/web/factsfigures_v7.html
|
| 84 |
+
|
| 85 |
+
#### Data responsibility filtering
|
| 86 |
+
|
| 87 |
+
The following filters are applied to WebLI, with the goal of training PaliGemma
|
| 88 |
+
on clean data:
|
| 89 |
+
|
| 90 |
+
* **Pornographic image filtering:** This filter removes images deemed to be of
|
| 91 |
+
pornographic nature.
|
| 92 |
+
* **Text safety filtering:** We identify and filter out images that are paired
|
| 93 |
+
with unsafe text. Unsafe text is any text deemed to contain or be about
|
| 94 |
+
CSAI, pornography, vulgarities, or otherwise offensive.
|
| 95 |
+
* **Text toxicity filtering:** We further use the [Perspective
|
| 96 |
+
API](https://perspectiveapi.com/) to identify and filter out images that are
|
| 97 |
+
paired with text deemed insulting, obscene, hateful or otherwise toxic.
|
| 98 |
+
* **Text personal information filtering:** We filtered certain personal information and other sensitive data using [Cloud Data Loss Prevention (DLP)
|
| 99 |
+
API](https://cloud.google.com/security/products/dlp) to protect the privacy
|
| 100 |
+
of individuals. Identifiers such as social security numbers and [other sensitive information types] were removed.
|
| 101 |
+
* **Additional methods:** Filtering based on content quality and safety in
|
| 102 |
+
line with our policies and practices.
|
| 103 |
+
|
| 104 |
+
[other sensitive information types]: https://cloud.google.com/sensitive-data-protection/docs/high-sensitivity-infotypes-reference?_gl=1*jg604m*_ga*ODk5MzA3ODQyLjE3MTAzMzQ3NTk.*_ga_WH2QY8WWF5*MTcxMDUxNTkxMS4yLjEuMTcxMDUxNjA2NC4wLjAuMA..&_ga=2.172110058.-899307842.1710334759
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
## How to Use
|
| 109 |
+
|
| 110 |
+
PaliGemma is a single-turn vision language model not meant for conversational use,
|
| 111 |
+
and it works best when fine-tuning to a specific use case.
|
| 112 |
+
|
| 113 |
+
You can configure which task the model will solve by conditioning it with task prefixes,
|
| 114 |
+
such as “detect” or “segment”. The pretrained models were trained in this fashion to imbue
|
| 115 |
+
them with a rich set of capabilities (question answering, captioning, segmentation, etc.).
|
| 116 |
+
However, they are not designed to be used directly, but to be transferred (by fine-tuning)
|
| 117 |
+
to specific tasks using a similar prompt structure. For interactive testing, you can use
|
| 118 |
+
the "mix" family of models, which have been fine-tuned on a mixture of tasks. To see this
|
| 119 |
+
model in action, check [this Space that uses the Transformers codebase](https://huggingface.co/spaces/big-vision/paligemma-hf).
|
| 120 |
+
|
| 121 |
+
Please, refer to the [usage and limitations section](#usage-and-limitations) for intended
|
| 122 |
+
use cases, or visit the [blog post](https://huggingface.co/blog/paligemma-google-vlm) for
|
| 123 |
+
additional details and examples.
|
| 124 |
+
|
| 125 |
+
## Use in Transformers
|
| 126 |
+
|
| 127 |
+
The following snippets use model `google/paligemma-3b-mix-224` for reference purposes.
|
| 128 |
+
The model in this repo you are now browsing may have been trained for other tasks, please
|
| 129 |
+
make sure you use appropriate inputs for the task at hand.
|
| 130 |
+
|
| 131 |
+
### Running the default precision (`float32`) on CPU
|
| 132 |
+
|
| 133 |
+
```python
|
| 134 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
| 135 |
+
from PIL import Image
|
| 136 |
+
import requests
|
| 137 |
+
import torch
|
| 138 |
+
|
| 139 |
+
model_id = "google/paligemma-3b-mix-224"
|
| 140 |
+
|
| 141 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
| 142 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 143 |
+
|
| 144 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval()
|
| 145 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 146 |
+
|
| 147 |
+
# Instruct the model to create a caption in Spanish
|
| 148 |
+
prompt = "caption es"
|
| 149 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
|
| 150 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
| 151 |
+
|
| 152 |
+
with torch.inference_mode():
|
| 153 |
+
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
| 154 |
+
generation = generation[0][input_len:]
|
| 155 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
| 156 |
+
print(decoded)
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
Output: `Un auto azul estacionado frente a un edificio.`
|
| 160 |
+
|
| 161 |
+
### Running other precisions on CUDA
|
| 162 |
+
|
| 163 |
+
For convenience, the repos contain revisions of the weights already converted to `bfloat16` and `float16`,
|
| 164 |
+
so you can use them to reduce the download size and avoid casting on your local computer.
|
| 165 |
+
|
| 166 |
+
This is how you'd run `bfloat16` on an nvidia CUDA card.
|
| 167 |
+
|
| 168 |
+
```python
|
| 169 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
| 170 |
+
from PIL import Image
|
| 171 |
+
import requests
|
| 172 |
+
import torch
|
| 173 |
+
|
| 174 |
+
model_id = "google/paligemma-3b-mix-224"
|
| 175 |
+
device = "cuda:0"
|
| 176 |
+
dtype = torch.bfloat16
|
| 177 |
+
|
| 178 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
| 179 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 180 |
+
|
| 181 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 182 |
+
model_id,
|
| 183 |
+
torch_dtype=dtype,
|
| 184 |
+
device_map=device,
|
| 185 |
+
revision="bfloat16",
|
| 186 |
+
).eval()
|
| 187 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 188 |
+
|
| 189 |
+
# Instruct the model to create a caption in Spanish
|
| 190 |
+
prompt = "caption es"
|
| 191 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
|
| 192 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
| 193 |
+
|
| 194 |
+
with torch.inference_mode():
|
| 195 |
+
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
| 196 |
+
generation = generation[0][input_len:]
|
| 197 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
| 198 |
+
print(decoded)
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
### Loading in 4-bit / 8-bit
|
| 202 |
+
|
| 203 |
+
You need to install `bitsandbytes` to automatically run inference using 8-bit or 4-bit precision:
|
| 204 |
+
|
| 205 |
+
```
|
| 206 |
+
pip install bitsandbytes accelerate
|
| 207 |
+
```
|
| 208 |
+
|
| 209 |
+
```
|
| 210 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
| 211 |
+
from PIL import Image
|
| 212 |
+
import requests
|
| 213 |
+
import torch
|
| 214 |
+
|
| 215 |
+
model_id = "google/paligemma-3b-mix-224"
|
| 216 |
+
device = "cuda:0"
|
| 217 |
+
dtype = torch.bfloat16
|
| 218 |
+
|
| 219 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
| 220 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 221 |
+
|
| 222 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 223 |
+
|
| 224 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 225 |
+
model_id, quantization_config=quantization_config
|
| 226 |
+
).eval()
|
| 227 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 228 |
+
|
| 229 |
+
# Instruct the model to create a caption in Spanish
|
| 230 |
+
prompt = "caption es"
|
| 231 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
|
| 232 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
| 233 |
+
|
| 234 |
+
with torch.inference_mode():
|
| 235 |
+
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
| 236 |
+
generation = generation[0][input_len:]
|
| 237 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
| 238 |
+
print(decoded)
|
| 239 |
+
```
|
| 240 |
+
|
| 241 |
+
## Implementation information
|
| 242 |
+
|
| 243 |
+
### Hardware
|
| 244 |
+
|
| 245 |
+
PaliGemma was trained using the latest generation of Tensor Processing Unit
|
| 246 |
+
(TPU) hardware (TPUv5e).
|
| 247 |
+
|
| 248 |
+
### Software
|
| 249 |
+
|
| 250 |
+
Training was done using [JAX](https://github.com/google/jax),
|
| 251 |
+
[Flax](https://github.com/google/flax),
|
| 252 |
+
[TFDS](https://github.com/tensorflow/datasets) and
|
| 253 |
+
[`big_vision`](https://github.com/google-research/big_vision).
|
| 254 |
+
|
| 255 |
+
JAX allows researchers to take advantage of the latest generation of hardware,
|
| 256 |
+
including TPUs, for faster and more efficient training of large models.
|
| 257 |
+
|
| 258 |
+
TFDS is used to access datasets and Flax is used for model architecture. The
|
| 259 |
+
PaliGemma fine-tune code and inference code are released in the `big_vision`
|
| 260 |
+
GitHub repository.
|
| 261 |
+
|
| 262 |
+
## Evaluation information
|
| 263 |
+
|
| 264 |
+
### Benchmark results
|
| 265 |
+
|
| 266 |
+
In order to verify the transferability of PaliGemma to a wide variety of
|
| 267 |
+
academic tasks, we fine-tune the pretrained models on each task. Additionally we
|
| 268 |
+
train the mix model with a mixture of the transfer tasks. We report results on
|
| 269 |
+
different resolutions to provide an impression of which tasks benefit from
|
| 270 |
+
increased resolution. Importantly, none of these tasks or datasets are part of
|
| 271 |
+
the pretraining data mixture, and their images are explicitly removed from the
|
| 272 |
+
web-scale pre-training data.
|
| 273 |
+
|
| 274 |
+
#### Single task (fine-tune on single task)
|
| 275 |
+
|
| 276 |
+
<table>
|
| 277 |
+
<tbody><tr>
|
| 278 |
+
<th>Benchmark<br>(train split)</th>
|
| 279 |
+
<th>Metric<br>(split)</th>
|
| 280 |
+
<th>pt-224</th>
|
| 281 |
+
<th>pt-448</th>
|
| 282 |
+
<th>pt-896</th>
|
| 283 |
+
</tr>
|
| 284 |
+
<tr>
|
| 285 |
+
<th>Captioning</th>
|
| 286 |
+
</tr>
|
| 287 |
+
<tr>
|
| 288 |
+
<td>
|
| 289 |
+
<a href="https://cocodataset.org/#home">COCO captions</a><br>(train+restval)
|
| 290 |
+
</td>
|
| 291 |
+
<td>CIDEr (val)</td>
|
| 292 |
+
<td>141.92</td>
|
| 293 |
+
<td>144.60</td>
|
| 294 |
+
</tr>
|
| 295 |
+
<tr>
|
| 296 |
+
<td>
|
| 297 |
+
<a href="https://nocaps.org/">NoCaps</a><br>(Eval of COCO<br>captions transfer)
|
| 298 |
+
</td>
|
| 299 |
+
<td>CIDEr (val)</td>
|
| 300 |
+
<td>121.72</td>
|
| 301 |
+
<td>123.58</td>
|
| 302 |
+
</tr>
|
| 303 |
+
<tr>
|
| 304 |
+
<td>
|
| 305 |
+
<a href="https://arxiv.org/pdf/2205.12522">COCO-35L</a><br>(train)
|
| 306 |
+
</td>
|
| 307 |
+
<td>CIDEr dev<br>(en/avg-34/avg)</td>
|
| 308 |
+
<td>
|
| 309 |
+
139.2<br>
|
| 310 |
+
115.8<br>
|
| 311 |
+
116.4
|
| 312 |
+
</td>
|
| 313 |
+
<td>
|
| 314 |
+
141.2<br>
|
| 315 |
+
118.0<br>
|
| 316 |
+
118.6
|
| 317 |
+
</td>
|
| 318 |
+
</tr>
|
| 319 |
+
<tr>
|
| 320 |
+
<td>
|
| 321 |
+
<a href="https://arxiv.org/pdf/2205.12522">XM3600</a><br>(Eval of COCO-35L transfer)
|
| 322 |
+
</td>
|
| 323 |
+
<td>CIDEr dev<br>(en/avg-34/avg)</td>
|
| 324 |
+
<td>
|
| 325 |
+
78.1<br>
|
| 326 |
+
41.3<br>
|
| 327 |
+
42.4
|
| 328 |
+
</td>
|
| 329 |
+
<td>
|
| 330 |
+
80.0<br>
|
| 331 |
+
41.9<br>
|
| 332 |
+
42.9
|
| 333 |
+
</td>
|
| 334 |
+
</tr>
|
| 335 |
+
<tr>
|
| 336 |
+
<td>
|
| 337 |
+
<a href="https://textvqa.org/textcaps/">TextCaps</a><br>(train)
|
| 338 |
+
</td>
|
| 339 |
+
<td>CIDEr (val)</td>
|
| 340 |
+
<td>127.48</td>
|
| 341 |
+
<td>153.94</td>
|
| 342 |
+
</tr>
|
| 343 |
+
<tr>
|
| 344 |
+
<td>
|
| 345 |
+
<a href="https://arxiv.org/abs/2110.11624">SciCap</a><br>(first sentence, no subfigure)<br>(train+val)
|
| 346 |
+
</td>
|
| 347 |
+
<td>CIDEr/BLEU-4<br>(test)</td>
|
| 348 |
+
<td>
|
| 349 |
+
162.25<br>
|
| 350 |
+
0.192<br>
|
| 351 |
+
</td>
|
| 352 |
+
<td>
|
| 353 |
+
181.49<br>
|
| 354 |
+
0.211<br>
|
| 355 |
+
</td>
|
| 356 |
+
</tr>
|
| 357 |
+
<tr>
|
| 358 |
+
<td>
|
| 359 |
+
<a href="https://arxiv.org/abs/2108.03353">Screen2words</a><br>(train+dev)
|
| 360 |
+
</td>
|
| 361 |
+
<td>CIDEr (test)</td>
|
| 362 |
+
<td>117.57</td>
|
| 363 |
+
<td>119.59</td>
|
| 364 |
+
</tr>
|
| 365 |
+
<tr>
|
| 366 |
+
<td>
|
| 367 |
+
<a href="https://arxiv.org/abs/2010.04295">Widget Captioning</a><br>(train+dev)
|
| 368 |
+
</td>
|
| 369 |
+
<td>CIDEr (test)</td>
|
| 370 |
+
<td>136.07</td>
|
| 371 |
+
<td>148.36</td>
|
| 372 |
+
</tr>
|
| 373 |
+
<tr>
|
| 374 |
+
<th>Question answering</th>
|
| 375 |
+
</tr>
|
| 376 |
+
<tr>
|
| 377 |
+
<td>
|
| 378 |
+
<a href="https://visualqa.org/index.html">VQAv2</a><br>(train+validation)
|
| 379 |
+
</td>
|
| 380 |
+
<td>Accuracy<br>(Test server - std)</td>
|
| 381 |
+
<td>83.19</td>
|
| 382 |
+
<td>85.64</td>
|
| 383 |
+
</tr>
|
| 384 |
+
<tr>
|
| 385 |
+
<td>
|
| 386 |
+
<a href="https://arxiv.org/abs/2401.06209">MMVP</a><br>(Eval of VQAv2 transfer)
|
| 387 |
+
</td>
|
| 388 |
+
<td>Paired Accuracy</td>
|
| 389 |
+
<td>47.33</td>
|
| 390 |
+
<td>45.33</td>
|
| 391 |
+
</tr>
|
| 392 |
+
<tr>
|
| 393 |
+
<td>
|
| 394 |
+
<a href="https://arxiv.org/abs/2305.10355">POPE</a><br>(Eval of VQAv2 transfer)
|
| 395 |
+
</td>
|
| 396 |
+
<td>Accuracy<br>(random/popular/<br>adversarial)</td>
|
| 397 |
+
<td>
|
| 398 |
+
87.80<br>
|
| 399 |
+
85.87<br>
|
| 400 |
+
84.27
|
| 401 |
+
</td>
|
| 402 |
+
<td>
|
| 403 |
+
88.23<br>
|
| 404 |
+
86.77<br>
|
| 405 |
+
85.90
|
| 406 |
+
</td>
|
| 407 |
+
</tr>
|
| 408 |
+
<tr>
|
| 409 |
+
<td>
|
| 410 |
+
<a href="https://okvqa.allenai.org/">OKVQA</a><br>(train)
|
| 411 |
+
</td>
|
| 412 |
+
<td>Accuracy (val)</td>
|
| 413 |
+
<td>63.54</td>
|
| 414 |
+
<td>63.15</td>
|
| 415 |
+
</tr>
|
| 416 |
+
<tr>
|
| 417 |
+
<td>
|
| 418 |
+
<a href="https://allenai.org/project/a-okvqa/home">A-OKVQA</a> (MC)<br>(train+val)
|
| 419 |
+
</td>
|
| 420 |
+
<td>Accuracy<br>(Test server)</td>
|
| 421 |
+
<td>76.37</td>
|
| 422 |
+
<td>76.90</td>
|
| 423 |
+
</tr>
|
| 424 |
+
<tr>
|
| 425 |
+
<td>
|
| 426 |
+
<a href="https://allenai.org/project/a-okvqa/home">A-OKVQA</a> (DA)<br>(train+val)
|
| 427 |
+
</td>
|
| 428 |
+
<td>Accuracy<br>(Test server)</td>
|
| 429 |
+
<td>61.85</td>
|
| 430 |
+
<td>63.22</td>
|
| 431 |
+
</tr>
|
| 432 |
+
<tr>
|
| 433 |
+
<td>
|
| 434 |
+
<a href="https://cs.stanford.edu/people/dorarad/gqa/about.html">GQA</a><br>(train_balanced+<br>val_balanced)
|
| 435 |
+
</td>
|
| 436 |
+
<td>Accuracy<br>(testdev balanced)</td>
|
| 437 |
+
<td>65.61</td>
|
| 438 |
+
<td>67.03</td>
|
| 439 |
+
</tr>
|
| 440 |
+
<tr>
|
| 441 |
+
<td>
|
| 442 |
+
<a href="https://aclanthology.org/2022.findings-acl.196/">xGQA</a><br>(Eval of GQA transfer)
|
| 443 |
+
</td>
|
| 444 |
+
<td>Mean Accuracy<br>(bn, de, en, id,<br>ko, pt, ru, zh)</td>
|
| 445 |
+
<td>58.37</td>
|
| 446 |
+
<td>59.07</td>
|
| 447 |
+
</tr>
|
| 448 |
+
<tr>
|
| 449 |
+
<td>
|
| 450 |
+
<a href="https://lil.nlp.cornell.edu/nlvr/">NLVR2</a><br>(train+dev)
|
| 451 |
+
</td>
|
| 452 |
+
<td>Accuracy (test)</td>
|
| 453 |
+
<td>90.02</td>
|
| 454 |
+
<td>88.93</td>
|
| 455 |
+
</tr>
|
| 456 |
+
<tr>
|
| 457 |
+
<td>
|
| 458 |
+
<a href="https://marvl-challenge.github.io/">MaRVL</a><br>(Eval of NLVR2 transfer)
|
| 459 |
+
</td>
|
| 460 |
+
<td>Mean Accuracy<br>(test)<br>(id, sw, ta, tr, zh)</td>
|
| 461 |
+
<td>80.57</td>
|
| 462 |
+
<td>76.78</td>
|
| 463 |
+
</tr>
|
| 464 |
+
<tr>
|
| 465 |
+
<td>
|
| 466 |
+
<a href="https://allenai.org/data/diagrams">AI2D</a><br>(train)
|
| 467 |
+
</td>
|
| 468 |
+
<td>Accuracy (test)</td>
|
| 469 |
+
<td>72.12</td>
|
| 470 |
+
<td>73.28</td>
|
| 471 |
+
</tr>
|
| 472 |
+
<tr>
|
| 473 |
+
<td>
|
| 474 |
+
<a href="https://scienceqa.github.io/">ScienceQA</a><br>(Img subset, no CoT)<br>(train+val)
|
| 475 |
+
</td>
|
| 476 |
+
<td>Accuracy (test)</td>
|
| 477 |
+
<td>95.39</td>
|
| 478 |
+
<td>95.93</td>
|
| 479 |
+
</tr>
|
| 480 |
+
<tr>
|
| 481 |
+
<td>
|
| 482 |
+
<a href="https://zenodo.org/records/6344334">RSVQA-LR</a> (Non numeric)<br>(train+val)
|
| 483 |
+
</td>
|
| 484 |
+
<td>Mean Accuracy<br>(test)</td>
|
| 485 |
+
<td>92.65</td>
|
| 486 |
+
<td>93.11</td>
|
| 487 |
+
</tr>
|
| 488 |
+
<tr>
|
| 489 |
+
<td>
|
| 490 |
+
<a href="https://zenodo.org/records/6344367">RSVQA-HR</a> (Non numeric)<br>(train+val)
|
| 491 |
+
</td>
|
| 492 |
+
<td>Mean Accuracy<br>(test/test2)</td>
|
| 493 |
+
<td>
|
| 494 |
+
92.61<br>
|
| 495 |
+
90.58
|
| 496 |
+
</td>
|
| 497 |
+
<td>
|
| 498 |
+
92.79<br>
|
| 499 |
+
90.54
|
| 500 |
+
</td>
|
| 501 |
+
</tr>
|
| 502 |
+
<tr>
|
| 503 |
+
<td>
|
| 504 |
+
<a href="https://arxiv.org/abs/2203.10244">ChartQA</a><br>(human+aug)x(train+val)
|
| 505 |
+
</td>
|
| 506 |
+
<td>Mean Relaxed<br>Accuracy<br>(test_human,<br>test_aug)</td>
|
| 507 |
+
<td>57.08</td>
|
| 508 |
+
<td>71.36</td>
|
| 509 |
+
</tr>
|
| 510 |
+
<tr>
|
| 511 |
+
<td>
|
| 512 |
+
<a href="https://vizwiz.org/tasks-and-datasets/vqa/">VizWiz VQA</a><br>(train+val)
|
| 513 |
+
</td>
|
| 514 |
+
<td>Accuracy<br>(Test server - std)</td>
|
| 515 |
+
<td>
|
| 516 |
+
73.7
|
| 517 |
+
</td>
|
| 518 |
+
<td>
|
| 519 |
+
75.52
|
| 520 |
+
</td>
|
| 521 |
+
</tr>
|
| 522 |
+
<tr>
|
| 523 |
+
<td>
|
| 524 |
+
<a href="https://arxiv.org/abs/1810.12440">TallyQA</a><br>(train)
|
| 525 |
+
</td>
|
| 526 |
+
<td>Accuracy<br>(test_simple/<br>test_complex)</td>
|
| 527 |
+
<td>
|
| 528 |
+
81.72<br>
|
| 529 |
+
69.56
|
| 530 |
+
</td>
|
| 531 |
+
<td>
|
| 532 |
+
84.86<br>
|
| 533 |
+
72.27
|
| 534 |
+
</td>
|
| 535 |
+
</tr>
|
| 536 |
+
<tr>
|
| 537 |
+
<td>
|
| 538 |
+
<a href="https://ocr-vqa.github.io/">OCR-VQA</a><br>(train+val)
|
| 539 |
+
</td>
|
| 540 |
+
<td>Accuracy (test)</td>
|
| 541 |
+
<td>72.32</td>
|
| 542 |
+
<td>74.61</td>
|
| 543 |
+
<td>74.93</td>
|
| 544 |
+
</tr>
|
| 545 |
+
<tr>
|
| 546 |
+
<td>
|
| 547 |
+
<a href="https://textvqa.org/">TextVQA</a><br>(train+val)
|
| 548 |
+
</td>
|
| 549 |
+
<td>Accuracy<br>(Test server - std)</td>
|
| 550 |
+
<td>55.47</td>
|
| 551 |
+
<td>73.15</td>
|
| 552 |
+
<td>76.48</td>
|
| 553 |
+
</tr>
|
| 554 |
+
<tr>
|
| 555 |
+
<td>
|
| 556 |
+
<a href="https://www.docvqa.org/">DocVQA</a><br>(train+val)
|
| 557 |
+
</td>
|
| 558 |
+
<td>ANLS (Test server)</td>
|
| 559 |
+
<td>43.74</td>
|
| 560 |
+
<td>78.02</td>
|
| 561 |
+
<td>84.77</td>
|
| 562 |
+
</tr>
|
| 563 |
+
<tr>
|
| 564 |
+
<td>
|
| 565 |
+
<a href="https://openaccess.thecvf.com/content/WACV2022/papers/Mathew_InfographicVQA_WACV_2022_paper.pdf">Infographic VQA</a><br>(train+val)
|
| 566 |
+
</td>
|
| 567 |
+
<td>ANLS (Test server)</td>
|
| 568 |
+
<td>28.46</td>
|
| 569 |
+
<td>40.47</td>
|
| 570 |
+
<td>47.75</td>
|
| 571 |
+
</tr>
|
| 572 |
+
<tr>
|
| 573 |
+
<td>
|
| 574 |
+
<a href="https://arxiv.org/abs/1905.13648">SceneText VQA</a><br>(train+val)
|
| 575 |
+
</td>
|
| 576 |
+
<td>ANLS (Test server)</td>
|
| 577 |
+
<td>63.29</td>
|
| 578 |
+
<td>81.82</td>
|
| 579 |
+
<td>84.40</td>
|
| 580 |
+
</tr>
|
| 581 |
+
<tr>
|
| 582 |
+
<th>Segmentation</th>
|
| 583 |
+
</tr>
|
| 584 |
+
<tr>
|
| 585 |
+
<td>
|
| 586 |
+
<a href="https://arxiv.org/abs/1608.00272">RefCOCO</a><br>(combined refcoco, refcoco+,<br>refcocog excluding val<br>and test images)
|
| 587 |
+
</td>
|
| 588 |
+
<td>MIoU<br>(validation)<br>refcoco/refcoco+/<br>refcocog</td>
|
| 589 |
+
<td>
|
| 590 |
+
73.40<br>
|
| 591 |
+
68.32<br>
|
| 592 |
+
67.65
|
| 593 |
+
</td>
|
| 594 |
+
<td>
|
| 595 |
+
75.57<br>
|
| 596 |
+
69.76<br>
|
| 597 |
+
70.17
|
| 598 |
+
</td>
|
| 599 |
+
<td>
|
| 600 |
+
76.94<br>
|
| 601 |
+
72.18<br>
|
| 602 |
+
72.22
|
| 603 |
+
</td>
|
| 604 |
+
</tr>
|
| 605 |
+
<tr>
|
| 606 |
+
<th>Video tasks (Caption/QA)</th>
|
| 607 |
+
</tr>
|
| 608 |
+
<tr>
|
| 609 |
+
<td>MSR-VTT (Captioning)</td>
|
| 610 |
+
<td>CIDEr (test)</td>
|
| 611 |
+
<td>70.54</td>
|
| 612 |
+
</tr>
|
| 613 |
+
<tr>
|
| 614 |
+
<td>MSR-VTT (QA)</td>
|
| 615 |
+
<td>Accuracy (test)</td>
|
| 616 |
+
<td>50.09</td>
|
| 617 |
+
</tr>
|
| 618 |
+
<tr>
|
| 619 |
+
<td>ActivityNet (Captioning)</td>
|
| 620 |
+
<td>CIDEr (test)</td>
|
| 621 |
+
<td>34.62</td>
|
| 622 |
+
</tr>
|
| 623 |
+
<tr>
|
| 624 |
+
<td>ActivityNet (QA)</td>
|
| 625 |
+
<td>Accuracy (test)</td>
|
| 626 |
+
<td>50.78</td>
|
| 627 |
+
</tr>
|
| 628 |
+
<tr>
|
| 629 |
+
<td>VATEX (Captioning)</td>
|
| 630 |
+
<td>CIDEr (test)</td>
|
| 631 |
+
<td>79.73</td>
|
| 632 |
+
</tr>
|
| 633 |
+
<tr>
|
| 634 |
+
<td>MSVD (QA)</td>
|
| 635 |
+
<td>Accuracy (test)</td>
|
| 636 |
+
<td>60.22</td>
|
| 637 |
+
</tr>
|
| 638 |
+
</tbody></table>
|
| 639 |
+
|
| 640 |
+
#### Mix model (fine-tune on mixture of transfer tasks)
|
| 641 |
+
|
| 642 |
+
<table>
|
| 643 |
+
<tbody><tr>
|
| 644 |
+
<th>Benchmark</th>
|
| 645 |
+
<th>Metric (split)</th>
|
| 646 |
+
<th>mix-224</th>
|
| 647 |
+
<th>mix-448</th>
|
| 648 |
+
</tr>
|
| 649 |
+
<tr>
|
| 650 |
+
<td><a href="https://arxiv.org/abs/2401.06209">MMVP</a></td>
|
| 651 |
+
<td>Paired Accuracy</td>
|
| 652 |
+
<td>46.00</td>
|
| 653 |
+
<td>45.33</td>
|
| 654 |
+
</tr>
|
| 655 |
+
<tr>
|
| 656 |
+
<td><a href="https://arxiv.org/abs/2305.10355">POPE</a></td>
|
| 657 |
+
<td>Accuracy<br>(random/popular/adversarial)</td>
|
| 658 |
+
<td>
|
| 659 |
+
88.00<br>
|
| 660 |
+
86.63<br>
|
| 661 |
+
85.67
|
| 662 |
+
</td>
|
| 663 |
+
<td>
|
| 664 |
+
89.37<br>
|
| 665 |
+
88.40<br>
|
| 666 |
+
87.47
|
| 667 |
+
</td>
|
| 668 |
+
</tr>
|
| 669 |
+
</tbody></table>
|
| 670 |
+
|
| 671 |
+
## Ethics and safety
|
| 672 |
+
|
| 673 |
+
### Evaluation approach
|
| 674 |
+
|
| 675 |
+
Our evaluation methods include structured evaluations and internal red-teaming
|
| 676 |
+
testing of relevant content policies. Red-teaming was conducted by a number of
|
| 677 |
+
different teams, each with different goals and human evaluation metrics. These
|
| 678 |
+
models were evaluated against a number of different categories relevant to
|
| 679 |
+
ethics and safety, including:
|
| 680 |
+
|
| 681 |
+
* Human evaluation on prompts covering child safety, content safety and
|
| 682 |
+
representational harms. See the [Gemma model
|
| 683 |
+
card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for
|
| 684 |
+
more details on evaluation approach, but with image captioning and visual
|
| 685 |
+
question answering setups.
|
| 686 |
+
* Image-to-Text benchmark evaluation: Benchmark against relevant academic
|
| 687 |
+
datasets such as FairFace Dataset ([Karkkainen et al.,
|
| 688 |
+
2021](https://arxiv.org/abs/1908.04913)).
|
| 689 |
+
|
| 690 |
+
### Evaluation results
|
| 691 |
+
|
| 692 |
+
* The human evaluation results of ethics and safety evaluations are within
|
| 693 |
+
acceptable thresholds for meeting [internal
|
| 694 |
+
policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11)
|
| 695 |
+
for categories such as child safety, content safety and representational
|
| 696 |
+
harms.
|
| 697 |
+
* On top of robust internal evaluations, we also use the Perspective API
|
| 698 |
+
(threshold of 0.8) to measure toxicity, profanity, and other potential
|
| 699 |
+
issues in the generated captions for images sourced from the FairFace
|
| 700 |
+
dataset. We report the maximum and median values observed across subgroups
|
| 701 |
+
for each of the perceived gender, ethnicity, and age attributes.
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
<table>
|
| 705 |
+
<tbody><tr>
|
| 706 |
+
</tr></tbody><tbody><tr><th>Metric</th>
|
| 707 |
+
<th>Perceived<br>gender</th>
|
| 708 |
+
<th></th>
|
| 709 |
+
<th>Ethnicity</th>
|
| 710 |
+
<th></th>
|
| 711 |
+
<th>Age group</th>
|
| 712 |
+
<th></th>
|
| 713 |
+
</tr>
|
| 714 |
+
<tr>
|
| 715 |
+
<th></th>
|
| 716 |
+
<th>Maximum</th>
|
| 717 |
+
<th>Median</th>
|
| 718 |
+
<th>Maximum</th>
|
| 719 |
+
<th>Median</th>
|
| 720 |
+
<th>Maximum</th>
|
| 721 |
+
<th>Median</th>
|
| 722 |
+
</tr>
|
| 723 |
+
<tr>
|
| 724 |
+
<td>Toxicity</td>
|
| 725 |
+
<td>0.04%</td>
|
| 726 |
+
<td>0.03%</td>
|
| 727 |
+
<td>0.08%</td>
|
| 728 |
+
<td>0.00%</td>
|
| 729 |
+
<td>0.09%</td>
|
| 730 |
+
<td>0.00%</td>
|
| 731 |
+
</tr>
|
| 732 |
+
<tr>
|
| 733 |
+
<td>Identity Attack</td>
|
| 734 |
+
<td>0.00%</td>
|
| 735 |
+
<td>0.00%</td>
|
| 736 |
+
<td>0.00%</td>
|
| 737 |
+
<td>0.00%</td>
|
| 738 |
+
<td>0.00%</td>
|
| 739 |
+
<td>0.00%</td>
|
| 740 |
+
</tr>
|
| 741 |
+
<tr>
|
| 742 |
+
<td>Insult</td>
|
| 743 |
+
<td>0.06%</td>
|
| 744 |
+
<td>0.04%</td>
|
| 745 |
+
<td>0.09%</td>
|
| 746 |
+
<td>0.07%</td>
|
| 747 |
+
<td>0.16%</td>
|
| 748 |
+
<td>0.00%</td>
|
| 749 |
+
</tr>
|
| 750 |
+
<tr>
|
| 751 |
+
<td>Threat</td>
|
| 752 |
+
<td>0.06%</td>
|
| 753 |
+
<td>0.05%</td>
|
| 754 |
+
<td>0.14%</td>
|
| 755 |
+
<td>0.05%</td>
|
| 756 |
+
<td>0.17%</td>
|
| 757 |
+
<td>0.00%</td>
|
| 758 |
+
</tr>
|
| 759 |
+
<tr>
|
| 760 |
+
<td>Profanity</td>
|
| 761 |
+
<td>0.00%</td>
|
| 762 |
+
<td>0.00%</td>
|
| 763 |
+
<td>0.00%</td>
|
| 764 |
+
<td>0.00%</td>
|
| 765 |
+
<td>0.00%</td>
|
| 766 |
+
<td>0.00%</td>
|
| 767 |
+
</tr>
|
| 768 |
+
</tbody></table>
|
| 769 |
+
|
| 770 |
+
## Usage and limitations
|
| 771 |
+
|
| 772 |
+
### Intended usage
|
| 773 |
+
|
| 774 |
+
Open Vision Language Models (VLMs) have a wide range of applications across
|
| 775 |
+
various industries and domains. The following list of potential uses is not
|
| 776 |
+
comprehensive. The purpose of this list is to provide contextual information
|
| 777 |
+
about the possible use-cases that the model creators considered as part of model
|
| 778 |
+
training and development.
|
| 779 |
+
|
| 780 |
+
Fine-tune on specific vision-language task:
|
| 781 |
+
|
| 782 |
+
* The pre-trained models can be fine-tuned on a wide range of vision-language
|
| 783 |
+
tasks such as: image captioning, short video caption, visual question
|
| 784 |
+
answering, text reading, object detection and object segmentation.
|
| 785 |
+
* The pre-trained models can be fine-tuned for specific domains such as remote
|
| 786 |
+
sensing question answering, visual questions from people who are blind,
|
| 787 |
+
science question answering, describe UI element functionalities.
|
| 788 |
+
* The pre-trained models can be fine-tuned for tasks with non-textual outputs
|
| 789 |
+
such as bounding boxes or segmentation masks.
|
| 790 |
+
|
| 791 |
+
Vision-language research:
|
| 792 |
+
|
| 793 |
+
* The pre-trained models and fine-tuned models can serve as a foundation for researchers to experiment with VLM
|
| 794 |
+
techniques, develop algorithms, and contribute to the advancement of the
|
| 795 |
+
field.
|
| 796 |
+
|
| 797 |
+
### Ethical considerations and risks
|
| 798 |
+
|
| 799 |
+
The development of vision-language models (VLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following:
|
| 800 |
+
|
| 801 |
+
* Bias and Fairness
|
| 802 |
+
* VLMs trained on large-scale, real-world image-text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card.
|
| 803 |
+
* Misinformation and Misuse
|
| 804 |
+
* VLMs can be misused to generate text that is false, misleading, or harmful.
|
| 805 |
+
* Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](https://ai.google.dev/responsible).
|
| 806 |
+
* Transparency and Accountability
|
| 807 |
+
* This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes.
|
| 808 |
+
* A responsibly developed open model offers the opportunity to share innovation by making VLM technology accessible to developers and researchers across the AI ecosystem.
|
| 809 |
+
|
| 810 |
+
|
| 811 |
+
Risks identified and mitigations:
|
| 812 |
+
|
| 813 |
+
* **Perpetuation of biases:** It's encouraged to perform continuous monitoring
|
| 814 |
+
(using evaluation metrics, human review) and the exploration of de-biasing
|
| 815 |
+
techniques during model training, fine-tuning, and other use cases.
|
| 816 |
+
* **Generation of harmful content:** Mechanisms and guidelines for content
|
| 817 |
+
safety are essential. Developers are encouraged to exercise caution and
|
| 818 |
+
implement appropriate content safety safeguards based on their specific
|
| 819 |
+
product policies and application use cases.
|
| 820 |
+
* **Misuse for malicious purposes:** Technical limitations and developer and
|
| 821 |
+
end-user education can help mitigate against malicious applications of LLMs.
|
| 822 |
+
Educational resources and reporting mechanisms for users to flag misuse are
|
| 823 |
+
provided. Prohibited uses of Gemma models are outlined in the [Gemma
|
| 824 |
+
Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
|
| 825 |
+
* **Privacy violations:** Models were trained on data filtered to remove certain personal information and sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques.
|
| 826 |
+
|
| 827 |
+
### Limitations
|
| 828 |
+
|
| 829 |
+
* Most limitations inherited from the underlying Gemma model still apply:
|
| 830 |
+
* VLMs are better at tasks that can be framed with clear prompts and
|
| 831 |
+
instructions. Open-ended or highly complex tasks might be challenging.
|
| 832 |
+
* Natural language is inherently complex. VLMs might struggle to grasp
|
| 833 |
+
subtle nuances, sarcasm, or figurative language.
|
| 834 |
+
* VLMs generate responses based on information they learned from their
|
| 835 |
+
training datasets, but they are not knowledge bases. They may generate
|
| 836 |
+
incorrect or outdated factual statements.
|
| 837 |
+
* VLMs rely on statistical patterns in language and images. They might
|
| 838 |
+
lack the ability to apply common sense reasoning in certain situations.
|
| 839 |
+
* PaliGemma was designed first and foremost to serve as a general pre-trained
|
| 840 |
+
model for transfer to specialized tasks. Hence, its "out of the box" or
|
| 841 |
+
"zero-shot" performance might lag behind models designed specifically for
|
| 842 |
+
that.
|
| 843 |
+
* PaliGemma is not a multi-turn chatbot. It is designed for a single round of
|
| 844 |
+
image and text input.
|
| 845 |
+
|
| 846 |
+
## Citation
|
| 847 |
+
|
| 848 |
+
```bibtex
|
| 849 |
+
@article{beyer2024paligemma,
|
| 850 |
+
title={{PaliGemma: A versatile 3B VLM for transfer}},
|
| 851 |
+
author={Lucas Beyer* and Andreas Steiner* and André Susano Pinto* and Alexander Kolesnikov* and Xiao Wang* and Daniel Salz and Maxim Neumann and Ibrahim Alabdulmohsin and Michael Tschannen and Emanuele Bugliarello and Thomas Unterthiner and Daniel Keysers and Skanda Koppula and Fangyu Liu and Adam Grycner and Alexey Gritsenko and Neil Houlsby and Manoj Kumar and Keran Rong and Julian Eisenschlos and Rishabh Kabra and Matthias Bauer and Matko Bošnjak and Xi Chen and Matthias Minderer and Paul Voigtlaender and Ioana Bica and Ivana Balazevic and Joan Puigcerver and Pinelopi Papalampidi and Olivier Henaff and Xi Xiong and Radu Soricut and Jeremiah Harmsen and Xiaohua Zhai*},
|
| 852 |
+
year={2024},
|
| 853 |
+
journal={arXiv preprint arXiv:2407.07726}
|
| 854 |
+
}
|
| 855 |
+
```
|
| 856 |
+
|
| 857 |
+
|
| 858 |
+
Find the paper [here](https://arxiv.org/abs/2407.07726).
|
added_tokens.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<image>": 257152
|
| 3 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "final-hf/paligemma-3b-mix-448-main",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"PaliGemmaForConditionalGeneration"
|
| 5 |
+
],
|
| 6 |
+
"bos_token_id": 2,
|
| 7 |
+
"eos_token_id": 1,
|
| 8 |
+
"hidden_size": 2048,
|
| 9 |
+
"ignore_index": -100,
|
| 10 |
+
"image_token_index": 257152,
|
| 11 |
+
"model_type": "paligemma",
|
| 12 |
+
"pad_token_id": 0,
|
| 13 |
+
"projection_dim": 2048,
|
| 14 |
+
"text_config": {
|
| 15 |
+
"hidden_size": 2048,
|
| 16 |
+
"intermediate_size": 16384,
|
| 17 |
+
"model_type": "gemma",
|
| 18 |
+
"num_attention_heads": 8,
|
| 19 |
+
"num_hidden_layers": 18,
|
| 20 |
+
"num_image_tokens": 1024,
|
| 21 |
+
"num_key_value_heads": 1,
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"vocab_size": 257216
|
| 24 |
+
},
|
| 25 |
+
"torch_dtype": "float32",
|
| 26 |
+
"transformers_version": "4.41.0.dev0",
|
| 27 |
+
"vision_config": {
|
| 28 |
+
"hidden_size": 1152,
|
| 29 |
+
"image_size": 448,
|
| 30 |
+
"intermediate_size": 4304,
|
| 31 |
+
"model_type": "siglip_vision_model",
|
| 32 |
+
"num_attention_heads": 16,
|
| 33 |
+
"num_hidden_layers": 27,
|
| 34 |
+
"num_image_tokens": 1024,
|
| 35 |
+
"patch_size": 14,
|
| 36 |
+
"projection_dim": 2048,
|
| 37 |
+
"projector_hidden_act": "gelu_fast",
|
| 38 |
+
"vision_use_head": false
|
| 39 |
+
},
|
| 40 |
+
"vocab_size": 257216
|
| 41 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 2,
|
| 4 |
+
"eos_token_id": 1,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.41.0.dev0"
|
| 7 |
+
}
|
gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:570dab6f84d3b784a06707cdc4742f97545dfd57d73742bb2fcb3190a09696a4
|
| 3 |
+
size 4956951424
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:334b225c0ec1db8f3952121f5f67a78b37167623e2178c0babe3086fcc8ea4ad
|
| 3 |
+
size 4999820608
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c75421941def510a8c2364726d8ab36cf1a0653b355368d2e2a80766b5a4f5f
|
| 3 |
+
size 1740714288
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 11697404864
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 7 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 8 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 10 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 11 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 20 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 21 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 26 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 27 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 28 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 29 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 30 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 31 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 32 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 33 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 34 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 35 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 36 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 37 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 38 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 39 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 40 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 41 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 42 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 43 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 44 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 45 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 46 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 47 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 48 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 49 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 50 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 51 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 52 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 53 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 54 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 55 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 56 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 57 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 58 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 59 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 60 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 61 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 62 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 63 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 64 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 65 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 66 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 68 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 70 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 71 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 72 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 73 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 74 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 75 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 76 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 77 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 78 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 79 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 80 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 81 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 82 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 83 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 84 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 85 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 86 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 87 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 88 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 89 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 90 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 91 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 92 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 93 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 94 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 95 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 96 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 97 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 98 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 99 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 100 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 101 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 102 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 103 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 104 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 105 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 106 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 107 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 108 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 109 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 110 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 111 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 112 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 113 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 114 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 115 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 116 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 117 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 118 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 119 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 120 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 121 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 122 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 123 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 124 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 125 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 126 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 127 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 128 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 129 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 130 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 131 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 132 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 133 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 134 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 135 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 136 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 137 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 138 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 139 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 140 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 141 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 142 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 143 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 144 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 145 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 146 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 147 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 148 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 149 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 150 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 151 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 152 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 153 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 154 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 155 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 156 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 157 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 158 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 159 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 160 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 161 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 162 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 163 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 164 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 165 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 166 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 167 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 168 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 169 |
+
"language_model.model.norm.weight": "model-00003-of-00003.safetensors",
|
| 170 |
+
"multi_modal_projector.linear.bias": "model-00001-of-00003.safetensors",
|
| 171 |
+
"multi_modal_projector.linear.weight": "model-00001-of-00003.safetensors",
|
| 172 |
+
"vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00003.safetensors",
|
| 173 |
+
"vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00003.safetensors",
|
| 174 |
+
"vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00003.safetensors",
|
| 175 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 176 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 177 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 178 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 179 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 180 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 181 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 182 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 183 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 184 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 185 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 186 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 187 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 188 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 189 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 190 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 191 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 192 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 193 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 194 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 195 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 196 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 197 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 198 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 199 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 200 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 201 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 202 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 203 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 204 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 205 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 206 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 207 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 208 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 209 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 210 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 211 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 212 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 213 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 214 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 215 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 216 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 217 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 218 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 219 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 220 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 221 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 222 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 223 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 224 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 225 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 226 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 227 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 228 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 229 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 230 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 231 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 232 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 233 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 234 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 235 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 236 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 237 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 238 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 239 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 240 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 241 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 242 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 243 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 244 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 245 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 246 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 247 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 248 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 249 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 250 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 251 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 252 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 253 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 254 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 255 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 256 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 257 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 258 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 259 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 260 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 261 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 262 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 263 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 264 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 265 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 266 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 267 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 268 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 269 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 270 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 271 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 272 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 273 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 274 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 275 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 276 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 277 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 278 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 279 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 280 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 281 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 282 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 283 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 284 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 285 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 286 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 287 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 288 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 289 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 290 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 291 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 292 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 293 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 294 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 295 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 296 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 297 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 298 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 299 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 300 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 301 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 302 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 303 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 304 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 305 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 306 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 307 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 308 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 309 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 310 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 311 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 312 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 313 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 314 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 315 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 316 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 317 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 318 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 319 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 320 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 321 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 322 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 323 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 324 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 325 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 326 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 327 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 328 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 329 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 330 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 331 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 332 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 333 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 334 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 335 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 336 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 337 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 338 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 339 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 340 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 341 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 342 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 343 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 344 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 345 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 346 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 347 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 348 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 349 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 350 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 351 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 352 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 353 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 354 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 355 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 356 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 357 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 358 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 359 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 360 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 361 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 362 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 363 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 364 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 365 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 366 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 367 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 368 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 369 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 370 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 371 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 372 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 373 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 374 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 375 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 376 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 377 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 378 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 379 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 380 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 381 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 382 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 383 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 384 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 385 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 386 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 387 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 388 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 389 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 390 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 391 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 392 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 393 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 394 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 395 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 396 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 397 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 398 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 399 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 400 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 401 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 402 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 403 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 404 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 405 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 406 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 407 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 408 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 409 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 410 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 411 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 412 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 413 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 414 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 415 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 416 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 417 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 418 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 419 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 420 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 421 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 422 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 423 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 424 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 425 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 426 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 427 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 428 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 429 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 430 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 431 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 432 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 433 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 434 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 435 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 436 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 437 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 438 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 439 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 440 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 441 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 442 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 443 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 444 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 445 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 446 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 447 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 448 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 449 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 450 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 451 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 452 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 453 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 454 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 455 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 456 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 457 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 458 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 459 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 460 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 461 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 462 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 463 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 464 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 465 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 466 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 467 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 468 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 469 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 470 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 471 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 472 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 473 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 474 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 475 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 476 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 477 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 478 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 479 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 480 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 481 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 482 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 483 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 484 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 485 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 486 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 487 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 488 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 489 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 490 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 491 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 492 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 493 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 494 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 495 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 496 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 497 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 498 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 499 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 500 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 501 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 502 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 503 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 504 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 505 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 506 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 507 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 508 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 509 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 510 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 511 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 512 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 513 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 514 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 515 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 516 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 517 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 518 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 519 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 520 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 521 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 522 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 523 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 524 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 525 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 526 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 527 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 528 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 529 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 530 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 531 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 532 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 533 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 534 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 535 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 536 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 537 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 538 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 539 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 540 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 541 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 542 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 543 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 544 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 545 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 546 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 547 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 548 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 549 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 550 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 551 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 552 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 553 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 554 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 555 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 556 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 557 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 558 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 559 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 560 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 561 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 562 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 563 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 564 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 565 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 566 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 567 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 568 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 569 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 570 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 571 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 572 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 573 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 574 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 575 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 576 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 577 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 578 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 579 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 580 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 581 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 582 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 583 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 584 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 585 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 586 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 587 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 588 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 589 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 590 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 591 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
| 592 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
| 593 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
| 594 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
| 595 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
| 596 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
| 597 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
| 598 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
| 599 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 600 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 601 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 602 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 603 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 604 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 605 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 606 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 607 |
+
"vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 608 |
+
"vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00003.safetensors"
|
| 609 |
+
}
|
| 610 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_valid_processor_keys": [
|
| 3 |
+
"images",
|
| 4 |
+
"do_resize",
|
| 5 |
+
"size",
|
| 6 |
+
"resample",
|
| 7 |
+
"do_rescale",
|
| 8 |
+
"rescale_factor",
|
| 9 |
+
"do_normalize",
|
| 10 |
+
"image_mean",
|
| 11 |
+
"image_std",
|
| 12 |
+
"return_tensors",
|
| 13 |
+
"data_format",
|
| 14 |
+
"input_data_format",
|
| 15 |
+
"do_convert_rgb"
|
| 16 |
+
],
|
| 17 |
+
"do_convert_rgb": null,
|
| 18 |
+
"do_normalize": true,
|
| 19 |
+
"do_rescale": true,
|
| 20 |
+
"do_resize": true,
|
| 21 |
+
"image_mean": [
|
| 22 |
+
0.5,
|
| 23 |
+
0.5,
|
| 24 |
+
0.5
|
| 25 |
+
],
|
| 26 |
+
"image_processor_type": "SiglipImageProcessor",
|
| 27 |
+
"image_seq_length": 1024,
|
| 28 |
+
"image_std": [
|
| 29 |
+
0.5,
|
| 30 |
+
0.5,
|
| 31 |
+
0.5
|
| 32 |
+
],
|
| 33 |
+
"processor_class": "PaliGemmaProcessor",
|
| 34 |
+
"resample": 3,
|
| 35 |
+
"rescale_factor": 0.00392156862745098,
|
| 36 |
+
"size": {
|
| 37 |
+
"height": 448,
|
| 38 |
+
"width": 448
|
| 39 |
+
}
|
| 40 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<image>"
|
| 4 |
+
],
|
| 5 |
+
"bos_token": {
|
| 6 |
+
"content": "<bos>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"eos_token": {
|
| 13 |
+
"content": "<eos>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"pad_token": {
|
| 20 |
+
"content": "<pad>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false
|
| 25 |
+
},
|
| 26 |
+
"unk_token": {
|
| 27 |
+
"content": "<unk>",
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"normalized": false,
|
| 30 |
+
"rstrip": false,
|
| 31 |
+
"single_word": false
|
| 32 |
+
}
|
| 33 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef6773c135b77b834de1d13c75a4c98ab7a3684ffd602d1831e1f1bf5467c563
|
| 3 |
+
size 17549604
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8986bb4f423f07f8c7f70d0dbe3526fb2316056c17bae71b1ea975e77a168fc6
|
| 3 |
+
size 4264023
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,1764 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<pad>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<eos>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "<bos>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"content": "<unk>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"4": {
|
| 38 |
+
"content": "<mask>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": true,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": false
|
| 44 |
+
},
|
| 45 |
+
"5": {
|
| 46 |
+
"content": "<2mass>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": true,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": false
|
| 52 |
+
},
|
| 53 |
+
"6": {
|
| 54 |
+
"content": "[@BOS@]",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": true,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": false
|
| 60 |
+
},
|
| 61 |
+
"7": {
|
| 62 |
+
"content": "<unused0>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": true,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": false
|
| 68 |
+
},
|
| 69 |
+
"8": {
|
| 70 |
+
"content": "<unused1>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": true,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": false
|
| 76 |
+
},
|
| 77 |
+
"9": {
|
| 78 |
+
"content": "<unused2>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": true,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": false
|
| 84 |
+
},
|
| 85 |
+
"10": {
|
| 86 |
+
"content": "<unused3>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": true,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": false
|
| 92 |
+
},
|
| 93 |
+
"11": {
|
| 94 |
+
"content": "<unused4>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": true,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": false
|
| 100 |
+
},
|
| 101 |
+
"12": {
|
| 102 |
+
"content": "<unused5>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": true,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": false
|
| 108 |
+
},
|
| 109 |
+
"13": {
|
| 110 |
+
"content": "<unused6>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": true,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": false
|
| 116 |
+
},
|
| 117 |
+
"14": {
|
| 118 |
+
"content": "<unused7>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": true,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"15": {
|
| 126 |
+
"content": "<unused8>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": true,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"16": {
|
| 134 |
+
"content": "<unused9>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": true,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"17": {
|
| 142 |
+
"content": "<unused10>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": true,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"18": {
|
| 150 |
+
"content": "<unused11>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": true,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"19": {
|
| 158 |
+
"content": "<unused12>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": true,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"20": {
|
| 166 |
+
"content": "<unused13>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": true,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"21": {
|
| 174 |
+
"content": "<unused14>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": true,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"22": {
|
| 182 |
+
"content": "<unused15>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": true,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"23": {
|
| 190 |
+
"content": "<unused16>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": true,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"24": {
|
| 198 |
+
"content": "<unused17>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": true,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"25": {
|
| 206 |
+
"content": "<unused18>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": true,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
},
|
| 213 |
+
"26": {
|
| 214 |
+
"content": "<unused19>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": true,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": false
|
| 220 |
+
},
|
| 221 |
+
"27": {
|
| 222 |
+
"content": "<unused20>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": true,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": false
|
| 228 |
+
},
|
| 229 |
+
"28": {
|
| 230 |
+
"content": "<unused21>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": true,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": false
|
| 236 |
+
},
|
| 237 |
+
"29": {
|
| 238 |
+
"content": "<unused22>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": true,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": false
|
| 244 |
+
},
|
| 245 |
+
"30": {
|
| 246 |
+
"content": "<unused23>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": true,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": false
|
| 252 |
+
},
|
| 253 |
+
"31": {
|
| 254 |
+
"content": "<unused24>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": true,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": false
|
| 260 |
+
},
|
| 261 |
+
"32": {
|
| 262 |
+
"content": "<unused25>",
|
| 263 |
+
"lstrip": false,
|
| 264 |
+
"normalized": true,
|
| 265 |
+
"rstrip": false,
|
| 266 |
+
"single_word": false,
|
| 267 |
+
"special": false
|
| 268 |
+
},
|
| 269 |
+
"33": {
|
| 270 |
+
"content": "<unused26>",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": true,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false,
|
| 275 |
+
"special": false
|
| 276 |
+
},
|
| 277 |
+
"34": {
|
| 278 |
+
"content": "<unused27>",
|
| 279 |
+
"lstrip": false,
|
| 280 |
+
"normalized": true,
|
| 281 |
+
"rstrip": false,
|
| 282 |
+
"single_word": false,
|
| 283 |
+
"special": false
|
| 284 |
+
},
|
| 285 |
+
"35": {
|
| 286 |
+
"content": "<unused28>",
|
| 287 |
+
"lstrip": false,
|
| 288 |
+
"normalized": true,
|
| 289 |
+
"rstrip": false,
|
| 290 |
+
"single_word": false,
|
| 291 |
+
"special": false
|
| 292 |
+
},
|
| 293 |
+
"36": {
|
| 294 |
+
"content": "<unused29>",
|
| 295 |
+
"lstrip": false,
|
| 296 |
+
"normalized": true,
|
| 297 |
+
"rstrip": false,
|
| 298 |
+
"single_word": false,
|
| 299 |
+
"special": false
|
| 300 |
+
},
|
| 301 |
+
"37": {
|
| 302 |
+
"content": "<unused30>",
|
| 303 |
+
"lstrip": false,
|
| 304 |
+
"normalized": true,
|
| 305 |
+
"rstrip": false,
|
| 306 |
+
"single_word": false,
|
| 307 |
+
"special": false
|
| 308 |
+
},
|
| 309 |
+
"38": {
|
| 310 |
+
"content": "<unused31>",
|
| 311 |
+
"lstrip": false,
|
| 312 |
+
"normalized": true,
|
| 313 |
+
"rstrip": false,
|
| 314 |
+
"single_word": false,
|
| 315 |
+
"special": false
|
| 316 |
+
},
|
| 317 |
+
"39": {
|
| 318 |
+
"content": "<unused32>",
|
| 319 |
+
"lstrip": false,
|
| 320 |
+
"normalized": true,
|
| 321 |
+
"rstrip": false,
|
| 322 |
+
"single_word": false,
|
| 323 |
+
"special": false
|
| 324 |
+
},
|
| 325 |
+
"40": {
|
| 326 |
+
"content": "<unused33>",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": true,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false,
|
| 331 |
+
"special": false
|
| 332 |
+
},
|
| 333 |
+
"41": {
|
| 334 |
+
"content": "<unused34>",
|
| 335 |
+
"lstrip": false,
|
| 336 |
+
"normalized": true,
|
| 337 |
+
"rstrip": false,
|
| 338 |
+
"single_word": false,
|
| 339 |
+
"special": false
|
| 340 |
+
},
|
| 341 |
+
"42": {
|
| 342 |
+
"content": "<unused35>",
|
| 343 |
+
"lstrip": false,
|
| 344 |
+
"normalized": true,
|
| 345 |
+
"rstrip": false,
|
| 346 |
+
"single_word": false,
|
| 347 |
+
"special": false
|
| 348 |
+
},
|
| 349 |
+
"43": {
|
| 350 |
+
"content": "<unused36>",
|
| 351 |
+
"lstrip": false,
|
| 352 |
+
"normalized": true,
|
| 353 |
+
"rstrip": false,
|
| 354 |
+
"single_word": false,
|
| 355 |
+
"special": false
|
| 356 |
+
},
|
| 357 |
+
"44": {
|
| 358 |
+
"content": "<unused37>",
|
| 359 |
+
"lstrip": false,
|
| 360 |
+
"normalized": true,
|
| 361 |
+
"rstrip": false,
|
| 362 |
+
"single_word": false,
|
| 363 |
+
"special": false
|
| 364 |
+
},
|
| 365 |
+
"45": {
|
| 366 |
+
"content": "<unused38>",
|
| 367 |
+
"lstrip": false,
|
| 368 |
+
"normalized": true,
|
| 369 |
+
"rstrip": false,
|
| 370 |
+
"single_word": false,
|
| 371 |
+
"special": false
|
| 372 |
+
},
|
| 373 |
+
"46": {
|
| 374 |
+
"content": "<unused39>",
|
| 375 |
+
"lstrip": false,
|
| 376 |
+
"normalized": true,
|
| 377 |
+
"rstrip": false,
|
| 378 |
+
"single_word": false,
|
| 379 |
+
"special": false
|
| 380 |
+
},
|
| 381 |
+
"47": {
|
| 382 |
+
"content": "<unused40>",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": true,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false,
|
| 387 |
+
"special": false
|
| 388 |
+
},
|
| 389 |
+
"48": {
|
| 390 |
+
"content": "<unused41>",
|
| 391 |
+
"lstrip": false,
|
| 392 |
+
"normalized": true,
|
| 393 |
+
"rstrip": false,
|
| 394 |
+
"single_word": false,
|
| 395 |
+
"special": false
|
| 396 |
+
},
|
| 397 |
+
"49": {
|
| 398 |
+
"content": "<unused42>",
|
| 399 |
+
"lstrip": false,
|
| 400 |
+
"normalized": true,
|
| 401 |
+
"rstrip": false,
|
| 402 |
+
"single_word": false,
|
| 403 |
+
"special": false
|
| 404 |
+
},
|
| 405 |
+
"50": {
|
| 406 |
+
"content": "<unused43>",
|
| 407 |
+
"lstrip": false,
|
| 408 |
+
"normalized": true,
|
| 409 |
+
"rstrip": false,
|
| 410 |
+
"single_word": false,
|
| 411 |
+
"special": false
|
| 412 |
+
},
|
| 413 |
+
"51": {
|
| 414 |
+
"content": "<unused44>",
|
| 415 |
+
"lstrip": false,
|
| 416 |
+
"normalized": true,
|
| 417 |
+
"rstrip": false,
|
| 418 |
+
"single_word": false,
|
| 419 |
+
"special": false
|
| 420 |
+
},
|
| 421 |
+
"52": {
|
| 422 |
+
"content": "<unused45>",
|
| 423 |
+
"lstrip": false,
|
| 424 |
+
"normalized": true,
|
| 425 |
+
"rstrip": false,
|
| 426 |
+
"single_word": false,
|
| 427 |
+
"special": false
|
| 428 |
+
},
|
| 429 |
+
"53": {
|
| 430 |
+
"content": "<unused46>",
|
| 431 |
+
"lstrip": false,
|
| 432 |
+
"normalized": true,
|
| 433 |
+
"rstrip": false,
|
| 434 |
+
"single_word": false,
|
| 435 |
+
"special": false
|
| 436 |
+
},
|
| 437 |
+
"54": {
|
| 438 |
+
"content": "<unused47>",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": true,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false,
|
| 443 |
+
"special": false
|
| 444 |
+
},
|
| 445 |
+
"55": {
|
| 446 |
+
"content": "<unused48>",
|
| 447 |
+
"lstrip": false,
|
| 448 |
+
"normalized": true,
|
| 449 |
+
"rstrip": false,
|
| 450 |
+
"single_word": false,
|
| 451 |
+
"special": false
|
| 452 |
+
},
|
| 453 |
+
"56": {
|
| 454 |
+
"content": "<unused49>",
|
| 455 |
+
"lstrip": false,
|
| 456 |
+
"normalized": true,
|
| 457 |
+
"rstrip": false,
|
| 458 |
+
"single_word": false,
|
| 459 |
+
"special": false
|
| 460 |
+
},
|
| 461 |
+
"57": {
|
| 462 |
+
"content": "<unused50>",
|
| 463 |
+
"lstrip": false,
|
| 464 |
+
"normalized": true,
|
| 465 |
+
"rstrip": false,
|
| 466 |
+
"single_word": false,
|
| 467 |
+
"special": false
|
| 468 |
+
},
|
| 469 |
+
"58": {
|
| 470 |
+
"content": "<unused51>",
|
| 471 |
+
"lstrip": false,
|
| 472 |
+
"normalized": true,
|
| 473 |
+
"rstrip": false,
|
| 474 |
+
"single_word": false,
|
| 475 |
+
"special": false
|
| 476 |
+
},
|
| 477 |
+
"59": {
|
| 478 |
+
"content": "<unused52>",
|
| 479 |
+
"lstrip": false,
|
| 480 |
+
"normalized": true,
|
| 481 |
+
"rstrip": false,
|
| 482 |
+
"single_word": false,
|
| 483 |
+
"special": false
|
| 484 |
+
},
|
| 485 |
+
"60": {
|
| 486 |
+
"content": "<unused53>",
|
| 487 |
+
"lstrip": false,
|
| 488 |
+
"normalized": true,
|
| 489 |
+
"rstrip": false,
|
| 490 |
+
"single_word": false,
|
| 491 |
+
"special": false
|
| 492 |
+
},
|
| 493 |
+
"61": {
|
| 494 |
+
"content": "<unused54>",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": true,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false,
|
| 499 |
+
"special": false
|
| 500 |
+
},
|
| 501 |
+
"62": {
|
| 502 |
+
"content": "<unused55>",
|
| 503 |
+
"lstrip": false,
|
| 504 |
+
"normalized": true,
|
| 505 |
+
"rstrip": false,
|
| 506 |
+
"single_word": false,
|
| 507 |
+
"special": false
|
| 508 |
+
},
|
| 509 |
+
"63": {
|
| 510 |
+
"content": "<unused56>",
|
| 511 |
+
"lstrip": false,
|
| 512 |
+
"normalized": true,
|
| 513 |
+
"rstrip": false,
|
| 514 |
+
"single_word": false,
|
| 515 |
+
"special": false
|
| 516 |
+
},
|
| 517 |
+
"64": {
|
| 518 |
+
"content": "<unused57>",
|
| 519 |
+
"lstrip": false,
|
| 520 |
+
"normalized": true,
|
| 521 |
+
"rstrip": false,
|
| 522 |
+
"single_word": false,
|
| 523 |
+
"special": false
|
| 524 |
+
},
|
| 525 |
+
"65": {
|
| 526 |
+
"content": "<unused58>",
|
| 527 |
+
"lstrip": false,
|
| 528 |
+
"normalized": true,
|
| 529 |
+
"rstrip": false,
|
| 530 |
+
"single_word": false,
|
| 531 |
+
"special": false
|
| 532 |
+
},
|
| 533 |
+
"66": {
|
| 534 |
+
"content": "<unused59>",
|
| 535 |
+
"lstrip": false,
|
| 536 |
+
"normalized": true,
|
| 537 |
+
"rstrip": false,
|
| 538 |
+
"single_word": false,
|
| 539 |
+
"special": false
|
| 540 |
+
},
|
| 541 |
+
"67": {
|
| 542 |
+
"content": "<unused60>",
|
| 543 |
+
"lstrip": false,
|
| 544 |
+
"normalized": true,
|
| 545 |
+
"rstrip": false,
|
| 546 |
+
"single_word": false,
|
| 547 |
+
"special": false
|
| 548 |
+
},
|
| 549 |
+
"68": {
|
| 550 |
+
"content": "<unused61>",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": true,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false,
|
| 555 |
+
"special": false
|
| 556 |
+
},
|
| 557 |
+
"69": {
|
| 558 |
+
"content": "<unused62>",
|
| 559 |
+
"lstrip": false,
|
| 560 |
+
"normalized": true,
|
| 561 |
+
"rstrip": false,
|
| 562 |
+
"single_word": false,
|
| 563 |
+
"special": false
|
| 564 |
+
},
|
| 565 |
+
"70": {
|
| 566 |
+
"content": "<unused63>",
|
| 567 |
+
"lstrip": false,
|
| 568 |
+
"normalized": true,
|
| 569 |
+
"rstrip": false,
|
| 570 |
+
"single_word": false,
|
| 571 |
+
"special": false
|
| 572 |
+
},
|
| 573 |
+
"71": {
|
| 574 |
+
"content": "<unused64>",
|
| 575 |
+
"lstrip": false,
|
| 576 |
+
"normalized": true,
|
| 577 |
+
"rstrip": false,
|
| 578 |
+
"single_word": false,
|
| 579 |
+
"special": false
|
| 580 |
+
},
|
| 581 |
+
"72": {
|
| 582 |
+
"content": "<unused65>",
|
| 583 |
+
"lstrip": false,
|
| 584 |
+
"normalized": true,
|
| 585 |
+
"rstrip": false,
|
| 586 |
+
"single_word": false,
|
| 587 |
+
"special": false
|
| 588 |
+
},
|
| 589 |
+
"73": {
|
| 590 |
+
"content": "<unused66>",
|
| 591 |
+
"lstrip": false,
|
| 592 |
+
"normalized": true,
|
| 593 |
+
"rstrip": false,
|
| 594 |
+
"single_word": false,
|
| 595 |
+
"special": false
|
| 596 |
+
},
|
| 597 |
+
"74": {
|
| 598 |
+
"content": "<unused67>",
|
| 599 |
+
"lstrip": false,
|
| 600 |
+
"normalized": true,
|
| 601 |
+
"rstrip": false,
|
| 602 |
+
"single_word": false,
|
| 603 |
+
"special": false
|
| 604 |
+
},
|
| 605 |
+
"75": {
|
| 606 |
+
"content": "<unused68>",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": true,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false,
|
| 611 |
+
"special": false
|
| 612 |
+
},
|
| 613 |
+
"76": {
|
| 614 |
+
"content": "<unused69>",
|
| 615 |
+
"lstrip": false,
|
| 616 |
+
"normalized": true,
|
| 617 |
+
"rstrip": false,
|
| 618 |
+
"single_word": false,
|
| 619 |
+
"special": false
|
| 620 |
+
},
|
| 621 |
+
"77": {
|
| 622 |
+
"content": "<unused70>",
|
| 623 |
+
"lstrip": false,
|
| 624 |
+
"normalized": true,
|
| 625 |
+
"rstrip": false,
|
| 626 |
+
"single_word": false,
|
| 627 |
+
"special": false
|
| 628 |
+
},
|
| 629 |
+
"78": {
|
| 630 |
+
"content": "<unused71>",
|
| 631 |
+
"lstrip": false,
|
| 632 |
+
"normalized": true,
|
| 633 |
+
"rstrip": false,
|
| 634 |
+
"single_word": false,
|
| 635 |
+
"special": false
|
| 636 |
+
},
|
| 637 |
+
"79": {
|
| 638 |
+
"content": "<unused72>",
|
| 639 |
+
"lstrip": false,
|
| 640 |
+
"normalized": true,
|
| 641 |
+
"rstrip": false,
|
| 642 |
+
"single_word": false,
|
| 643 |
+
"special": false
|
| 644 |
+
},
|
| 645 |
+
"80": {
|
| 646 |
+
"content": "<unused73>",
|
| 647 |
+
"lstrip": false,
|
| 648 |
+
"normalized": true,
|
| 649 |
+
"rstrip": false,
|
| 650 |
+
"single_word": false,
|
| 651 |
+
"special": false
|
| 652 |
+
},
|
| 653 |
+
"81": {
|
| 654 |
+
"content": "<unused74>",
|
| 655 |
+
"lstrip": false,
|
| 656 |
+
"normalized": true,
|
| 657 |
+
"rstrip": false,
|
| 658 |
+
"single_word": false,
|
| 659 |
+
"special": false
|
| 660 |
+
},
|
| 661 |
+
"82": {
|
| 662 |
+
"content": "<unused75>",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": true,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false,
|
| 667 |
+
"special": false
|
| 668 |
+
},
|
| 669 |
+
"83": {
|
| 670 |
+
"content": "<unused76>",
|
| 671 |
+
"lstrip": false,
|
| 672 |
+
"normalized": true,
|
| 673 |
+
"rstrip": false,
|
| 674 |
+
"single_word": false,
|
| 675 |
+
"special": false
|
| 676 |
+
},
|
| 677 |
+
"84": {
|
| 678 |
+
"content": "<unused77>",
|
| 679 |
+
"lstrip": false,
|
| 680 |
+
"normalized": true,
|
| 681 |
+
"rstrip": false,
|
| 682 |
+
"single_word": false,
|
| 683 |
+
"special": false
|
| 684 |
+
},
|
| 685 |
+
"85": {
|
| 686 |
+
"content": "<unused78>",
|
| 687 |
+
"lstrip": false,
|
| 688 |
+
"normalized": true,
|
| 689 |
+
"rstrip": false,
|
| 690 |
+
"single_word": false,
|
| 691 |
+
"special": false
|
| 692 |
+
},
|
| 693 |
+
"86": {
|
| 694 |
+
"content": "<unused79>",
|
| 695 |
+
"lstrip": false,
|
| 696 |
+
"normalized": true,
|
| 697 |
+
"rstrip": false,
|
| 698 |
+
"single_word": false,
|
| 699 |
+
"special": false
|
| 700 |
+
},
|
| 701 |
+
"87": {
|
| 702 |
+
"content": "<unused80>",
|
| 703 |
+
"lstrip": false,
|
| 704 |
+
"normalized": true,
|
| 705 |
+
"rstrip": false,
|
| 706 |
+
"single_word": false,
|
| 707 |
+
"special": false
|
| 708 |
+
},
|
| 709 |
+
"88": {
|
| 710 |
+
"content": "<unused81>",
|
| 711 |
+
"lstrip": false,
|
| 712 |
+
"normalized": true,
|
| 713 |
+
"rstrip": false,
|
| 714 |
+
"single_word": false,
|
| 715 |
+
"special": false
|
| 716 |
+
},
|
| 717 |
+
"89": {
|
| 718 |
+
"content": "<unused82>",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": true,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false,
|
| 723 |
+
"special": false
|
| 724 |
+
},
|
| 725 |
+
"90": {
|
| 726 |
+
"content": "<unused83>",
|
| 727 |
+
"lstrip": false,
|
| 728 |
+
"normalized": true,
|
| 729 |
+
"rstrip": false,
|
| 730 |
+
"single_word": false,
|
| 731 |
+
"special": false
|
| 732 |
+
},
|
| 733 |
+
"91": {
|
| 734 |
+
"content": "<unused84>",
|
| 735 |
+
"lstrip": false,
|
| 736 |
+
"normalized": true,
|
| 737 |
+
"rstrip": false,
|
| 738 |
+
"single_word": false,
|
| 739 |
+
"special": false
|
| 740 |
+
},
|
| 741 |
+
"92": {
|
| 742 |
+
"content": "<unused85>",
|
| 743 |
+
"lstrip": false,
|
| 744 |
+
"normalized": true,
|
| 745 |
+
"rstrip": false,
|
| 746 |
+
"single_word": false,
|
| 747 |
+
"special": false
|
| 748 |
+
},
|
| 749 |
+
"93": {
|
| 750 |
+
"content": "<unused86>",
|
| 751 |
+
"lstrip": false,
|
| 752 |
+
"normalized": true,
|
| 753 |
+
"rstrip": false,
|
| 754 |
+
"single_word": false,
|
| 755 |
+
"special": false
|
| 756 |
+
},
|
| 757 |
+
"94": {
|
| 758 |
+
"content": "<unused87>",
|
| 759 |
+
"lstrip": false,
|
| 760 |
+
"normalized": true,
|
| 761 |
+
"rstrip": false,
|
| 762 |
+
"single_word": false,
|
| 763 |
+
"special": false
|
| 764 |
+
},
|
| 765 |
+
"95": {
|
| 766 |
+
"content": "<unused88>",
|
| 767 |
+
"lstrip": false,
|
| 768 |
+
"normalized": true,
|
| 769 |
+
"rstrip": false,
|
| 770 |
+
"single_word": false,
|
| 771 |
+
"special": false
|
| 772 |
+
},
|
| 773 |
+
"96": {
|
| 774 |
+
"content": "<unused89>",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": true,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false,
|
| 779 |
+
"special": false
|
| 780 |
+
},
|
| 781 |
+
"97": {
|
| 782 |
+
"content": "<unused90>",
|
| 783 |
+
"lstrip": false,
|
| 784 |
+
"normalized": true,
|
| 785 |
+
"rstrip": false,
|
| 786 |
+
"single_word": false,
|
| 787 |
+
"special": false
|
| 788 |
+
},
|
| 789 |
+
"98": {
|
| 790 |
+
"content": "<unused91>",
|
| 791 |
+
"lstrip": false,
|
| 792 |
+
"normalized": true,
|
| 793 |
+
"rstrip": false,
|
| 794 |
+
"single_word": false,
|
| 795 |
+
"special": false
|
| 796 |
+
},
|
| 797 |
+
"99": {
|
| 798 |
+
"content": "<unused92>",
|
| 799 |
+
"lstrip": false,
|
| 800 |
+
"normalized": true,
|
| 801 |
+
"rstrip": false,
|
| 802 |
+
"single_word": false,
|
| 803 |
+
"special": false
|
| 804 |
+
},
|
| 805 |
+
"100": {
|
| 806 |
+
"content": "<unused93>",
|
| 807 |
+
"lstrip": false,
|
| 808 |
+
"normalized": true,
|
| 809 |
+
"rstrip": false,
|
| 810 |
+
"single_word": false,
|
| 811 |
+
"special": false
|
| 812 |
+
},
|
| 813 |
+
"101": {
|
| 814 |
+
"content": "<unused94>",
|
| 815 |
+
"lstrip": false,
|
| 816 |
+
"normalized": true,
|
| 817 |
+
"rstrip": false,
|
| 818 |
+
"single_word": false,
|
| 819 |
+
"special": false
|
| 820 |
+
},
|
| 821 |
+
"102": {
|
| 822 |
+
"content": "<unused95>",
|
| 823 |
+
"lstrip": false,
|
| 824 |
+
"normalized": true,
|
| 825 |
+
"rstrip": false,
|
| 826 |
+
"single_word": false,
|
| 827 |
+
"special": false
|
| 828 |
+
},
|
| 829 |
+
"103": {
|
| 830 |
+
"content": "<unused96>",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": true,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false,
|
| 835 |
+
"special": false
|
| 836 |
+
},
|
| 837 |
+
"104": {
|
| 838 |
+
"content": "<unused97>",
|
| 839 |
+
"lstrip": false,
|
| 840 |
+
"normalized": true,
|
| 841 |
+
"rstrip": false,
|
| 842 |
+
"single_word": false,
|
| 843 |
+
"special": false
|
| 844 |
+
},
|
| 845 |
+
"105": {
|
| 846 |
+
"content": "<unused98>",
|
| 847 |
+
"lstrip": false,
|
| 848 |
+
"normalized": true,
|
| 849 |
+
"rstrip": false,
|
| 850 |
+
"single_word": false,
|
| 851 |
+
"special": false
|
| 852 |
+
},
|
| 853 |
+
"106": {
|
| 854 |
+
"content": "<start_of_turn>",
|
| 855 |
+
"lstrip": false,
|
| 856 |
+
"normalized": true,
|
| 857 |
+
"rstrip": false,
|
| 858 |
+
"single_word": false,
|
| 859 |
+
"special": false
|
| 860 |
+
},
|
| 861 |
+
"107": {
|
| 862 |
+
"content": "<end_of_turn>",
|
| 863 |
+
"lstrip": false,
|
| 864 |
+
"normalized": true,
|
| 865 |
+
"rstrip": false,
|
| 866 |
+
"single_word": false,
|
| 867 |
+
"special": false
|
| 868 |
+
},
|
| 869 |
+
"108": {
|
| 870 |
+
"content": "\n",
|
| 871 |
+
"lstrip": false,
|
| 872 |
+
"normalized": true,
|
| 873 |
+
"rstrip": false,
|
| 874 |
+
"single_word": false,
|
| 875 |
+
"special": false
|
| 876 |
+
},
|
| 877 |
+
"109": {
|
| 878 |
+
"content": "\n\n",
|
| 879 |
+
"lstrip": false,
|
| 880 |
+
"normalized": true,
|
| 881 |
+
"rstrip": false,
|
| 882 |
+
"single_word": false,
|
| 883 |
+
"special": false
|
| 884 |
+
},
|
| 885 |
+
"110": {
|
| 886 |
+
"content": "\n\n\n",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": true,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false,
|
| 891 |
+
"special": false
|
| 892 |
+
},
|
| 893 |
+
"111": {
|
| 894 |
+
"content": "\n\n\n\n",
|
| 895 |
+
"lstrip": false,
|
| 896 |
+
"normalized": true,
|
| 897 |
+
"rstrip": false,
|
| 898 |
+
"single_word": false,
|
| 899 |
+
"special": false
|
| 900 |
+
},
|
| 901 |
+
"112": {
|
| 902 |
+
"content": "\n\n\n\n\n",
|
| 903 |
+
"lstrip": false,
|
| 904 |
+
"normalized": true,
|
| 905 |
+
"rstrip": false,
|
| 906 |
+
"single_word": false,
|
| 907 |
+
"special": false
|
| 908 |
+
},
|
| 909 |
+
"113": {
|
| 910 |
+
"content": "\n\n\n\n\n\n",
|
| 911 |
+
"lstrip": false,
|
| 912 |
+
"normalized": true,
|
| 913 |
+
"rstrip": false,
|
| 914 |
+
"single_word": false,
|
| 915 |
+
"special": false
|
| 916 |
+
},
|
| 917 |
+
"114": {
|
| 918 |
+
"content": "\n\n\n\n\n\n\n",
|
| 919 |
+
"lstrip": false,
|
| 920 |
+
"normalized": true,
|
| 921 |
+
"rstrip": false,
|
| 922 |
+
"single_word": false,
|
| 923 |
+
"special": false
|
| 924 |
+
},
|
| 925 |
+
"115": {
|
| 926 |
+
"content": "\n\n\n\n\n\n\n\n",
|
| 927 |
+
"lstrip": false,
|
| 928 |
+
"normalized": true,
|
| 929 |
+
"rstrip": false,
|
| 930 |
+
"single_word": false,
|
| 931 |
+
"special": false
|
| 932 |
+
},
|
| 933 |
+
"116": {
|
| 934 |
+
"content": "\n\n\n\n\n\n\n\n\n",
|
| 935 |
+
"lstrip": false,
|
| 936 |
+
"normalized": true,
|
| 937 |
+
"rstrip": false,
|
| 938 |
+
"single_word": false,
|
| 939 |
+
"special": false
|
| 940 |
+
},
|
| 941 |
+
"117": {
|
| 942 |
+
"content": "\n\n\n\n\n\n\n\n\n\n",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": true,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false,
|
| 947 |
+
"special": false
|
| 948 |
+
},
|
| 949 |
+
"118": {
|
| 950 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n",
|
| 951 |
+
"lstrip": false,
|
| 952 |
+
"normalized": true,
|
| 953 |
+
"rstrip": false,
|
| 954 |
+
"single_word": false,
|
| 955 |
+
"special": false
|
| 956 |
+
},
|
| 957 |
+
"119": {
|
| 958 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 959 |
+
"lstrip": false,
|
| 960 |
+
"normalized": true,
|
| 961 |
+
"rstrip": false,
|
| 962 |
+
"single_word": false,
|
| 963 |
+
"special": false
|
| 964 |
+
},
|
| 965 |
+
"120": {
|
| 966 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 967 |
+
"lstrip": false,
|
| 968 |
+
"normalized": true,
|
| 969 |
+
"rstrip": false,
|
| 970 |
+
"single_word": false,
|
| 971 |
+
"special": false
|
| 972 |
+
},
|
| 973 |
+
"121": {
|
| 974 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 975 |
+
"lstrip": false,
|
| 976 |
+
"normalized": true,
|
| 977 |
+
"rstrip": false,
|
| 978 |
+
"single_word": false,
|
| 979 |
+
"special": false
|
| 980 |
+
},
|
| 981 |
+
"122": {
|
| 982 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 983 |
+
"lstrip": false,
|
| 984 |
+
"normalized": true,
|
| 985 |
+
"rstrip": false,
|
| 986 |
+
"single_word": false,
|
| 987 |
+
"special": false
|
| 988 |
+
},
|
| 989 |
+
"123": {
|
| 990 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 991 |
+
"lstrip": false,
|
| 992 |
+
"normalized": true,
|
| 993 |
+
"rstrip": false,
|
| 994 |
+
"single_word": false,
|
| 995 |
+
"special": false
|
| 996 |
+
},
|
| 997 |
+
"124": {
|
| 998 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": true,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false,
|
| 1003 |
+
"special": false
|
| 1004 |
+
},
|
| 1005 |
+
"125": {
|
| 1006 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1007 |
+
"lstrip": false,
|
| 1008 |
+
"normalized": true,
|
| 1009 |
+
"rstrip": false,
|
| 1010 |
+
"single_word": false,
|
| 1011 |
+
"special": false
|
| 1012 |
+
},
|
| 1013 |
+
"126": {
|
| 1014 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1015 |
+
"lstrip": false,
|
| 1016 |
+
"normalized": true,
|
| 1017 |
+
"rstrip": false,
|
| 1018 |
+
"single_word": false,
|
| 1019 |
+
"special": false
|
| 1020 |
+
},
|
| 1021 |
+
"127": {
|
| 1022 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1023 |
+
"lstrip": false,
|
| 1024 |
+
"normalized": true,
|
| 1025 |
+
"rstrip": false,
|
| 1026 |
+
"single_word": false,
|
| 1027 |
+
"special": false
|
| 1028 |
+
},
|
| 1029 |
+
"128": {
|
| 1030 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1031 |
+
"lstrip": false,
|
| 1032 |
+
"normalized": true,
|
| 1033 |
+
"rstrip": false,
|
| 1034 |
+
"single_word": false,
|
| 1035 |
+
"special": false
|
| 1036 |
+
},
|
| 1037 |
+
"129": {
|
| 1038 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1039 |
+
"lstrip": false,
|
| 1040 |
+
"normalized": true,
|
| 1041 |
+
"rstrip": false,
|
| 1042 |
+
"single_word": false,
|
| 1043 |
+
"special": false
|
| 1044 |
+
},
|
| 1045 |
+
"130": {
|
| 1046 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1047 |
+
"lstrip": false,
|
| 1048 |
+
"normalized": true,
|
| 1049 |
+
"rstrip": false,
|
| 1050 |
+
"single_word": false,
|
| 1051 |
+
"special": false
|
| 1052 |
+
},
|
| 1053 |
+
"131": {
|
| 1054 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": true,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false,
|
| 1059 |
+
"special": false
|
| 1060 |
+
},
|
| 1061 |
+
"132": {
|
| 1062 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1063 |
+
"lstrip": false,
|
| 1064 |
+
"normalized": true,
|
| 1065 |
+
"rstrip": false,
|
| 1066 |
+
"single_word": false,
|
| 1067 |
+
"special": false
|
| 1068 |
+
},
|
| 1069 |
+
"133": {
|
| 1070 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1071 |
+
"lstrip": false,
|
| 1072 |
+
"normalized": true,
|
| 1073 |
+
"rstrip": false,
|
| 1074 |
+
"single_word": false,
|
| 1075 |
+
"special": false
|
| 1076 |
+
},
|
| 1077 |
+
"134": {
|
| 1078 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1079 |
+
"lstrip": false,
|
| 1080 |
+
"normalized": true,
|
| 1081 |
+
"rstrip": false,
|
| 1082 |
+
"single_word": false,
|
| 1083 |
+
"special": false
|
| 1084 |
+
},
|
| 1085 |
+
"135": {
|
| 1086 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1087 |
+
"lstrip": false,
|
| 1088 |
+
"normalized": true,
|
| 1089 |
+
"rstrip": false,
|
| 1090 |
+
"single_word": false,
|
| 1091 |
+
"special": false
|
| 1092 |
+
},
|
| 1093 |
+
"136": {
|
| 1094 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1095 |
+
"lstrip": false,
|
| 1096 |
+
"normalized": true,
|
| 1097 |
+
"rstrip": false,
|
| 1098 |
+
"single_word": false,
|
| 1099 |
+
"special": false
|
| 1100 |
+
},
|
| 1101 |
+
"137": {
|
| 1102 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1103 |
+
"lstrip": false,
|
| 1104 |
+
"normalized": true,
|
| 1105 |
+
"rstrip": false,
|
| 1106 |
+
"single_word": false,
|
| 1107 |
+
"special": false
|
| 1108 |
+
},
|
| 1109 |
+
"138": {
|
| 1110 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": true,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false,
|
| 1115 |
+
"special": false
|
| 1116 |
+
},
|
| 1117 |
+
"139": {
|
| 1118 |
+
"content": "▁▁",
|
| 1119 |
+
"lstrip": false,
|
| 1120 |
+
"normalized": true,
|
| 1121 |
+
"rstrip": false,
|
| 1122 |
+
"single_word": false,
|
| 1123 |
+
"special": false
|
| 1124 |
+
},
|
| 1125 |
+
"140": {
|
| 1126 |
+
"content": "▁▁▁",
|
| 1127 |
+
"lstrip": false,
|
| 1128 |
+
"normalized": true,
|
| 1129 |
+
"rstrip": false,
|
| 1130 |
+
"single_word": false,
|
| 1131 |
+
"special": false
|
| 1132 |
+
},
|
| 1133 |
+
"141": {
|
| 1134 |
+
"content": "▁▁▁▁",
|
| 1135 |
+
"lstrip": false,
|
| 1136 |
+
"normalized": true,
|
| 1137 |
+
"rstrip": false,
|
| 1138 |
+
"single_word": false,
|
| 1139 |
+
"special": false
|
| 1140 |
+
},
|
| 1141 |
+
"142": {
|
| 1142 |
+
"content": "▁▁▁▁▁",
|
| 1143 |
+
"lstrip": false,
|
| 1144 |
+
"normalized": true,
|
| 1145 |
+
"rstrip": false,
|
| 1146 |
+
"single_word": false,
|
| 1147 |
+
"special": false
|
| 1148 |
+
},
|
| 1149 |
+
"143": {
|
| 1150 |
+
"content": "▁▁▁▁▁▁",
|
| 1151 |
+
"lstrip": false,
|
| 1152 |
+
"normalized": true,
|
| 1153 |
+
"rstrip": false,
|
| 1154 |
+
"single_word": false,
|
| 1155 |
+
"special": false
|
| 1156 |
+
},
|
| 1157 |
+
"144": {
|
| 1158 |
+
"content": "▁▁▁▁▁▁▁",
|
| 1159 |
+
"lstrip": false,
|
| 1160 |
+
"normalized": true,
|
| 1161 |
+
"rstrip": false,
|
| 1162 |
+
"single_word": false,
|
| 1163 |
+
"special": false
|
| 1164 |
+
},
|
| 1165 |
+
"145": {
|
| 1166 |
+
"content": "▁▁▁▁▁▁▁▁",
|
| 1167 |
+
"lstrip": false,
|
| 1168 |
+
"normalized": true,
|
| 1169 |
+
"rstrip": false,
|
| 1170 |
+
"single_word": false,
|
| 1171 |
+
"special": false
|
| 1172 |
+
},
|
| 1173 |
+
"146": {
|
| 1174 |
+
"content": "▁▁▁▁▁▁▁▁▁",
|
| 1175 |
+
"lstrip": false,
|
| 1176 |
+
"normalized": true,
|
| 1177 |
+
"rstrip": false,
|
| 1178 |
+
"single_word": false,
|
| 1179 |
+
"special": false
|
| 1180 |
+
},
|
| 1181 |
+
"147": {
|
| 1182 |
+
"content": "▁▁▁▁▁▁▁▁▁▁",
|
| 1183 |
+
"lstrip": false,
|
| 1184 |
+
"normalized": true,
|
| 1185 |
+
"rstrip": false,
|
| 1186 |
+
"single_word": false,
|
| 1187 |
+
"special": false
|
| 1188 |
+
},
|
| 1189 |
+
"148": {
|
| 1190 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁",
|
| 1191 |
+
"lstrip": false,
|
| 1192 |
+
"normalized": true,
|
| 1193 |
+
"rstrip": false,
|
| 1194 |
+
"single_word": false,
|
| 1195 |
+
"special": false
|
| 1196 |
+
},
|
| 1197 |
+
"149": {
|
| 1198 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1199 |
+
"lstrip": false,
|
| 1200 |
+
"normalized": true,
|
| 1201 |
+
"rstrip": false,
|
| 1202 |
+
"single_word": false,
|
| 1203 |
+
"special": false
|
| 1204 |
+
},
|
| 1205 |
+
"150": {
|
| 1206 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1207 |
+
"lstrip": false,
|
| 1208 |
+
"normalized": true,
|
| 1209 |
+
"rstrip": false,
|
| 1210 |
+
"single_word": false,
|
| 1211 |
+
"special": false
|
| 1212 |
+
},
|
| 1213 |
+
"151": {
|
| 1214 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1215 |
+
"lstrip": false,
|
| 1216 |
+
"normalized": true,
|
| 1217 |
+
"rstrip": false,
|
| 1218 |
+
"single_word": false,
|
| 1219 |
+
"special": false
|
| 1220 |
+
},
|
| 1221 |
+
"152": {
|
| 1222 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1223 |
+
"lstrip": false,
|
| 1224 |
+
"normalized": true,
|
| 1225 |
+
"rstrip": false,
|
| 1226 |
+
"single_word": false,
|
| 1227 |
+
"special": false
|
| 1228 |
+
},
|
| 1229 |
+
"153": {
|
| 1230 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1231 |
+
"lstrip": false,
|
| 1232 |
+
"normalized": true,
|
| 1233 |
+
"rstrip": false,
|
| 1234 |
+
"single_word": false,
|
| 1235 |
+
"special": false
|
| 1236 |
+
},
|
| 1237 |
+
"154": {
|
| 1238 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1239 |
+
"lstrip": false,
|
| 1240 |
+
"normalized": true,
|
| 1241 |
+
"rstrip": false,
|
| 1242 |
+
"single_word": false,
|
| 1243 |
+
"special": false
|
| 1244 |
+
},
|
| 1245 |
+
"155": {
|
| 1246 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1247 |
+
"lstrip": false,
|
| 1248 |
+
"normalized": true,
|
| 1249 |
+
"rstrip": false,
|
| 1250 |
+
"single_word": false,
|
| 1251 |
+
"special": false
|
| 1252 |
+
},
|
| 1253 |
+
"156": {
|
| 1254 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1255 |
+
"lstrip": false,
|
| 1256 |
+
"normalized": true,
|
| 1257 |
+
"rstrip": false,
|
| 1258 |
+
"single_word": false,
|
| 1259 |
+
"special": false
|
| 1260 |
+
},
|
| 1261 |
+
"157": {
|
| 1262 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1263 |
+
"lstrip": false,
|
| 1264 |
+
"normalized": true,
|
| 1265 |
+
"rstrip": false,
|
| 1266 |
+
"single_word": false,
|
| 1267 |
+
"special": false
|
| 1268 |
+
},
|
| 1269 |
+
"158": {
|
| 1270 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1271 |
+
"lstrip": false,
|
| 1272 |
+
"normalized": true,
|
| 1273 |
+
"rstrip": false,
|
| 1274 |
+
"single_word": false,
|
| 1275 |
+
"special": false
|
| 1276 |
+
},
|
| 1277 |
+
"159": {
|
| 1278 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1279 |
+
"lstrip": false,
|
| 1280 |
+
"normalized": true,
|
| 1281 |
+
"rstrip": false,
|
| 1282 |
+
"single_word": false,
|
| 1283 |
+
"special": false
|
| 1284 |
+
},
|
| 1285 |
+
"160": {
|
| 1286 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1287 |
+
"lstrip": false,
|
| 1288 |
+
"normalized": true,
|
| 1289 |
+
"rstrip": false,
|
| 1290 |
+
"single_word": false,
|
| 1291 |
+
"special": false
|
| 1292 |
+
},
|
| 1293 |
+
"161": {
|
| 1294 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1295 |
+
"lstrip": false,
|
| 1296 |
+
"normalized": true,
|
| 1297 |
+
"rstrip": false,
|
| 1298 |
+
"single_word": false,
|
| 1299 |
+
"special": false
|
| 1300 |
+
},
|
| 1301 |
+
"162": {
|
| 1302 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1303 |
+
"lstrip": false,
|
| 1304 |
+
"normalized": true,
|
| 1305 |
+
"rstrip": false,
|
| 1306 |
+
"single_word": false,
|
| 1307 |
+
"special": false
|
| 1308 |
+
},
|
| 1309 |
+
"163": {
|
| 1310 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1311 |
+
"lstrip": false,
|
| 1312 |
+
"normalized": true,
|
| 1313 |
+
"rstrip": false,
|
| 1314 |
+
"single_word": false,
|
| 1315 |
+
"special": false
|
| 1316 |
+
},
|
| 1317 |
+
"164": {
|
| 1318 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1319 |
+
"lstrip": false,
|
| 1320 |
+
"normalized": true,
|
| 1321 |
+
"rstrip": false,
|
| 1322 |
+
"single_word": false,
|
| 1323 |
+
"special": false
|
| 1324 |
+
},
|
| 1325 |
+
"165": {
|
| 1326 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1327 |
+
"lstrip": false,
|
| 1328 |
+
"normalized": true,
|
| 1329 |
+
"rstrip": false,
|
| 1330 |
+
"single_word": false,
|
| 1331 |
+
"special": false
|
| 1332 |
+
},
|
| 1333 |
+
"166": {
|
| 1334 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1335 |
+
"lstrip": false,
|
| 1336 |
+
"normalized": true,
|
| 1337 |
+
"rstrip": false,
|
| 1338 |
+
"single_word": false,
|
| 1339 |
+
"special": false
|
| 1340 |
+
},
|
| 1341 |
+
"167": {
|
| 1342 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1343 |
+
"lstrip": false,
|
| 1344 |
+
"normalized": true,
|
| 1345 |
+
"rstrip": false,
|
| 1346 |
+
"single_word": false,
|
| 1347 |
+
"special": false
|
| 1348 |
+
},
|
| 1349 |
+
"168": {
|
| 1350 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1351 |
+
"lstrip": false,
|
| 1352 |
+
"normalized": true,
|
| 1353 |
+
"rstrip": false,
|
| 1354 |
+
"single_word": false,
|
| 1355 |
+
"special": false
|
| 1356 |
+
},
|
| 1357 |
+
"169": {
|
| 1358 |
+
"content": "<table>",
|
| 1359 |
+
"lstrip": false,
|
| 1360 |
+
"normalized": true,
|
| 1361 |
+
"rstrip": false,
|
| 1362 |
+
"single_word": false,
|
| 1363 |
+
"special": false
|
| 1364 |
+
},
|
| 1365 |
+
"170": {
|
| 1366 |
+
"content": "<caption>",
|
| 1367 |
+
"lstrip": false,
|
| 1368 |
+
"normalized": true,
|
| 1369 |
+
"rstrip": false,
|
| 1370 |
+
"single_word": false,
|
| 1371 |
+
"special": false
|
| 1372 |
+
},
|
| 1373 |
+
"171": {
|
| 1374 |
+
"content": "<thead>",
|
| 1375 |
+
"lstrip": false,
|
| 1376 |
+
"normalized": true,
|
| 1377 |
+
"rstrip": false,
|
| 1378 |
+
"single_word": false,
|
| 1379 |
+
"special": false
|
| 1380 |
+
},
|
| 1381 |
+
"172": {
|
| 1382 |
+
"content": "<tbody>",
|
| 1383 |
+
"lstrip": false,
|
| 1384 |
+
"normalized": true,
|
| 1385 |
+
"rstrip": false,
|
| 1386 |
+
"single_word": false,
|
| 1387 |
+
"special": false
|
| 1388 |
+
},
|
| 1389 |
+
"173": {
|
| 1390 |
+
"content": "<tfoot>",
|
| 1391 |
+
"lstrip": false,
|
| 1392 |
+
"normalized": true,
|
| 1393 |
+
"rstrip": false,
|
| 1394 |
+
"single_word": false,
|
| 1395 |
+
"special": false
|
| 1396 |
+
},
|
| 1397 |
+
"174": {
|
| 1398 |
+
"content": "<tr>",
|
| 1399 |
+
"lstrip": false,
|
| 1400 |
+
"normalized": true,
|
| 1401 |
+
"rstrip": false,
|
| 1402 |
+
"single_word": false,
|
| 1403 |
+
"special": false
|
| 1404 |
+
},
|
| 1405 |
+
"175": {
|
| 1406 |
+
"content": "<th>",
|
| 1407 |
+
"lstrip": false,
|
| 1408 |
+
"normalized": true,
|
| 1409 |
+
"rstrip": false,
|
| 1410 |
+
"single_word": false,
|
| 1411 |
+
"special": false
|
| 1412 |
+
},
|
| 1413 |
+
"176": {
|
| 1414 |
+
"content": "<td>",
|
| 1415 |
+
"lstrip": false,
|
| 1416 |
+
"normalized": true,
|
| 1417 |
+
"rstrip": false,
|
| 1418 |
+
"single_word": false,
|
| 1419 |
+
"special": false
|
| 1420 |
+
},
|
| 1421 |
+
"177": {
|
| 1422 |
+
"content": "</table>",
|
| 1423 |
+
"lstrip": false,
|
| 1424 |
+
"normalized": true,
|
| 1425 |
+
"rstrip": false,
|
| 1426 |
+
"single_word": false,
|
| 1427 |
+
"special": false
|
| 1428 |
+
},
|
| 1429 |
+
"178": {
|
| 1430 |
+
"content": "</caption>",
|
| 1431 |
+
"lstrip": false,
|
| 1432 |
+
"normalized": true,
|
| 1433 |
+
"rstrip": false,
|
| 1434 |
+
"single_word": false,
|
| 1435 |
+
"special": false
|
| 1436 |
+
},
|
| 1437 |
+
"179": {
|
| 1438 |
+
"content": "</thead>",
|
| 1439 |
+
"lstrip": false,
|
| 1440 |
+
"normalized": true,
|
| 1441 |
+
"rstrip": false,
|
| 1442 |
+
"single_word": false,
|
| 1443 |
+
"special": false
|
| 1444 |
+
},
|
| 1445 |
+
"180": {
|
| 1446 |
+
"content": "</tbody>",
|
| 1447 |
+
"lstrip": false,
|
| 1448 |
+
"normalized": true,
|
| 1449 |
+
"rstrip": false,
|
| 1450 |
+
"single_word": false,
|
| 1451 |
+
"special": false
|
| 1452 |
+
},
|
| 1453 |
+
"181": {
|
| 1454 |
+
"content": "</tfoot>",
|
| 1455 |
+
"lstrip": false,
|
| 1456 |
+
"normalized": true,
|
| 1457 |
+
"rstrip": false,
|
| 1458 |
+
"single_word": false,
|
| 1459 |
+
"special": false
|
| 1460 |
+
},
|
| 1461 |
+
"182": {
|
| 1462 |
+
"content": "</tr>",
|
| 1463 |
+
"lstrip": false,
|
| 1464 |
+
"normalized": true,
|
| 1465 |
+
"rstrip": false,
|
| 1466 |
+
"single_word": false,
|
| 1467 |
+
"special": false
|
| 1468 |
+
},
|
| 1469 |
+
"183": {
|
| 1470 |
+
"content": "</th>",
|
| 1471 |
+
"lstrip": false,
|
| 1472 |
+
"normalized": true,
|
| 1473 |
+
"rstrip": false,
|
| 1474 |
+
"single_word": false,
|
| 1475 |
+
"special": false
|
| 1476 |
+
},
|
| 1477 |
+
"184": {
|
| 1478 |
+
"content": "</td>",
|
| 1479 |
+
"lstrip": false,
|
| 1480 |
+
"normalized": true,
|
| 1481 |
+
"rstrip": false,
|
| 1482 |
+
"single_word": false,
|
| 1483 |
+
"special": false
|
| 1484 |
+
},
|
| 1485 |
+
"185": {
|
| 1486 |
+
"content": "<h1>",
|
| 1487 |
+
"lstrip": false,
|
| 1488 |
+
"normalized": true,
|
| 1489 |
+
"rstrip": false,
|
| 1490 |
+
"single_word": false,
|
| 1491 |
+
"special": false
|
| 1492 |
+
},
|
| 1493 |
+
"186": {
|
| 1494 |
+
"content": "<h2>",
|
| 1495 |
+
"lstrip": false,
|
| 1496 |
+
"normalized": true,
|
| 1497 |
+
"rstrip": false,
|
| 1498 |
+
"single_word": false,
|
| 1499 |
+
"special": false
|
| 1500 |
+
},
|
| 1501 |
+
"187": {
|
| 1502 |
+
"content": "<h3>",
|
| 1503 |
+
"lstrip": false,
|
| 1504 |
+
"normalized": true,
|
| 1505 |
+
"rstrip": false,
|
| 1506 |
+
"single_word": false,
|
| 1507 |
+
"special": false
|
| 1508 |
+
},
|
| 1509 |
+
"188": {
|
| 1510 |
+
"content": "<h4>",
|
| 1511 |
+
"lstrip": false,
|
| 1512 |
+
"normalized": true,
|
| 1513 |
+
"rstrip": false,
|
| 1514 |
+
"single_word": false,
|
| 1515 |
+
"special": false
|
| 1516 |
+
},
|
| 1517 |
+
"189": {
|
| 1518 |
+
"content": "<h5>",
|
| 1519 |
+
"lstrip": false,
|
| 1520 |
+
"normalized": true,
|
| 1521 |
+
"rstrip": false,
|
| 1522 |
+
"single_word": false,
|
| 1523 |
+
"special": false
|
| 1524 |
+
},
|
| 1525 |
+
"190": {
|
| 1526 |
+
"content": "<h6>",
|
| 1527 |
+
"lstrip": false,
|
| 1528 |
+
"normalized": true,
|
| 1529 |
+
"rstrip": false,
|
| 1530 |
+
"single_word": false,
|
| 1531 |
+
"special": false
|
| 1532 |
+
},
|
| 1533 |
+
"191": {
|
| 1534 |
+
"content": "<blockquote>",
|
| 1535 |
+
"lstrip": false,
|
| 1536 |
+
"normalized": true,
|
| 1537 |
+
"rstrip": false,
|
| 1538 |
+
"single_word": false,
|
| 1539 |
+
"special": false
|
| 1540 |
+
},
|
| 1541 |
+
"192": {
|
| 1542 |
+
"content": "</h1>",
|
| 1543 |
+
"lstrip": false,
|
| 1544 |
+
"normalized": true,
|
| 1545 |
+
"rstrip": false,
|
| 1546 |
+
"single_word": false,
|
| 1547 |
+
"special": false
|
| 1548 |
+
},
|
| 1549 |
+
"193": {
|
| 1550 |
+
"content": "</h2>",
|
| 1551 |
+
"lstrip": false,
|
| 1552 |
+
"normalized": true,
|
| 1553 |
+
"rstrip": false,
|
| 1554 |
+
"single_word": false,
|
| 1555 |
+
"special": false
|
| 1556 |
+
},
|
| 1557 |
+
"194": {
|
| 1558 |
+
"content": "</h3>",
|
| 1559 |
+
"lstrip": false,
|
| 1560 |
+
"normalized": true,
|
| 1561 |
+
"rstrip": false,
|
| 1562 |
+
"single_word": false,
|
| 1563 |
+
"special": false
|
| 1564 |
+
},
|
| 1565 |
+
"195": {
|
| 1566 |
+
"content": "</h4>",
|
| 1567 |
+
"lstrip": false,
|
| 1568 |
+
"normalized": true,
|
| 1569 |
+
"rstrip": false,
|
| 1570 |
+
"single_word": false,
|
| 1571 |
+
"special": false
|
| 1572 |
+
},
|
| 1573 |
+
"196": {
|
| 1574 |
+
"content": "</h5>",
|
| 1575 |
+
"lstrip": false,
|
| 1576 |
+
"normalized": true,
|
| 1577 |
+
"rstrip": false,
|
| 1578 |
+
"single_word": false,
|
| 1579 |
+
"special": false
|
| 1580 |
+
},
|
| 1581 |
+
"197": {
|
| 1582 |
+
"content": "</h6>",
|
| 1583 |
+
"lstrip": false,
|
| 1584 |
+
"normalized": true,
|
| 1585 |
+
"rstrip": false,
|
| 1586 |
+
"single_word": false,
|
| 1587 |
+
"special": false
|
| 1588 |
+
},
|
| 1589 |
+
"198": {
|
| 1590 |
+
"content": "</blockquote>",
|
| 1591 |
+
"lstrip": false,
|
| 1592 |
+
"normalized": true,
|
| 1593 |
+
"rstrip": false,
|
| 1594 |
+
"single_word": false,
|
| 1595 |
+
"special": false
|
| 1596 |
+
},
|
| 1597 |
+
"199": {
|
| 1598 |
+
"content": "<strong>",
|
| 1599 |
+
"lstrip": false,
|
| 1600 |
+
"normalized": true,
|
| 1601 |
+
"rstrip": false,
|
| 1602 |
+
"single_word": false,
|
| 1603 |
+
"special": false
|
| 1604 |
+
},
|
| 1605 |
+
"200": {
|
| 1606 |
+
"content": "<em>",
|
| 1607 |
+
"lstrip": false,
|
| 1608 |
+
"normalized": true,
|
| 1609 |
+
"rstrip": false,
|
| 1610 |
+
"single_word": false,
|
| 1611 |
+
"special": false
|
| 1612 |
+
},
|
| 1613 |
+
"201": {
|
| 1614 |
+
"content": "<b>",
|
| 1615 |
+
"lstrip": false,
|
| 1616 |
+
"normalized": true,
|
| 1617 |
+
"rstrip": false,
|
| 1618 |
+
"single_word": false,
|
| 1619 |
+
"special": false
|
| 1620 |
+
},
|
| 1621 |
+
"202": {
|
| 1622 |
+
"content": "<i>",
|
| 1623 |
+
"lstrip": false,
|
| 1624 |
+
"normalized": true,
|
| 1625 |
+
"rstrip": false,
|
| 1626 |
+
"single_word": false,
|
| 1627 |
+
"special": false
|
| 1628 |
+
},
|
| 1629 |
+
"203": {
|
| 1630 |
+
"content": "<u>",
|
| 1631 |
+
"lstrip": false,
|
| 1632 |
+
"normalized": true,
|
| 1633 |
+
"rstrip": false,
|
| 1634 |
+
"single_word": false,
|
| 1635 |
+
"special": false
|
| 1636 |
+
},
|
| 1637 |
+
"204": {
|
| 1638 |
+
"content": "<s>",
|
| 1639 |
+
"lstrip": false,
|
| 1640 |
+
"normalized": true,
|
| 1641 |
+
"rstrip": false,
|
| 1642 |
+
"single_word": false,
|
| 1643 |
+
"special": false
|
| 1644 |
+
},
|
| 1645 |
+
"205": {
|
| 1646 |
+
"content": "<sub>",
|
| 1647 |
+
"lstrip": false,
|
| 1648 |
+
"normalized": true,
|
| 1649 |
+
"rstrip": false,
|
| 1650 |
+
"single_word": false,
|
| 1651 |
+
"special": false
|
| 1652 |
+
},
|
| 1653 |
+
"206": {
|
| 1654 |
+
"content": "<sup>",
|
| 1655 |
+
"lstrip": false,
|
| 1656 |
+
"normalized": true,
|
| 1657 |
+
"rstrip": false,
|
| 1658 |
+
"single_word": false,
|
| 1659 |
+
"special": false
|
| 1660 |
+
},
|
| 1661 |
+
"207": {
|
| 1662 |
+
"content": "<code>",
|
| 1663 |
+
"lstrip": false,
|
| 1664 |
+
"normalized": true,
|
| 1665 |
+
"rstrip": false,
|
| 1666 |
+
"single_word": false,
|
| 1667 |
+
"special": false
|
| 1668 |
+
},
|
| 1669 |
+
"208": {
|
| 1670 |
+
"content": "</strong>",
|
| 1671 |
+
"lstrip": false,
|
| 1672 |
+
"normalized": true,
|
| 1673 |
+
"rstrip": false,
|
| 1674 |
+
"single_word": false,
|
| 1675 |
+
"special": false
|
| 1676 |
+
},
|
| 1677 |
+
"209": {
|
| 1678 |
+
"content": "</em>",
|
| 1679 |
+
"lstrip": false,
|
| 1680 |
+
"normalized": true,
|
| 1681 |
+
"rstrip": false,
|
| 1682 |
+
"single_word": false,
|
| 1683 |
+
"special": false
|
| 1684 |
+
},
|
| 1685 |
+
"210": {
|
| 1686 |
+
"content": "</b>",
|
| 1687 |
+
"lstrip": false,
|
| 1688 |
+
"normalized": true,
|
| 1689 |
+
"rstrip": false,
|
| 1690 |
+
"single_word": false,
|
| 1691 |
+
"special": false
|
| 1692 |
+
},
|
| 1693 |
+
"211": {
|
| 1694 |
+
"content": "</i>",
|
| 1695 |
+
"lstrip": false,
|
| 1696 |
+
"normalized": true,
|
| 1697 |
+
"rstrip": false,
|
| 1698 |
+
"single_word": false,
|
| 1699 |
+
"special": false
|
| 1700 |
+
},
|
| 1701 |
+
"212": {
|
| 1702 |
+
"content": "</u>",
|
| 1703 |
+
"lstrip": false,
|
| 1704 |
+
"normalized": true,
|
| 1705 |
+
"rstrip": false,
|
| 1706 |
+
"single_word": false,
|
| 1707 |
+
"special": false
|
| 1708 |
+
},
|
| 1709 |
+
"213": {
|
| 1710 |
+
"content": "</s>",
|
| 1711 |
+
"lstrip": false,
|
| 1712 |
+
"normalized": true,
|
| 1713 |
+
"rstrip": false,
|
| 1714 |
+
"single_word": false,
|
| 1715 |
+
"special": false
|
| 1716 |
+
},
|
| 1717 |
+
"214": {
|
| 1718 |
+
"content": "</sub>",
|
| 1719 |
+
"lstrip": false,
|
| 1720 |
+
"normalized": true,
|
| 1721 |
+
"rstrip": false,
|
| 1722 |
+
"single_word": false,
|
| 1723 |
+
"special": false
|
| 1724 |
+
},
|
| 1725 |
+
"215": {
|
| 1726 |
+
"content": "</sup>",
|
| 1727 |
+
"lstrip": false,
|
| 1728 |
+
"normalized": true,
|
| 1729 |
+
"rstrip": false,
|
| 1730 |
+
"single_word": false,
|
| 1731 |
+
"special": false
|
| 1732 |
+
},
|
| 1733 |
+
"216": {
|
| 1734 |
+
"content": "</code>",
|
| 1735 |
+
"lstrip": false,
|
| 1736 |
+
"normalized": true,
|
| 1737 |
+
"rstrip": false,
|
| 1738 |
+
"single_word": false,
|
| 1739 |
+
"special": false
|
| 1740 |
+
},
|
| 1741 |
+
"257152": {
|
| 1742 |
+
"content": "<image>",
|
| 1743 |
+
"lstrip": false,
|
| 1744 |
+
"normalized": false,
|
| 1745 |
+
"rstrip": false,
|
| 1746 |
+
"single_word": false,
|
| 1747 |
+
"special": true
|
| 1748 |
+
}
|
| 1749 |
+
},
|
| 1750 |
+
"additional_special_tokens": [
|
| 1751 |
+
"<image>"
|
| 1752 |
+
],
|
| 1753 |
+
"bos_token": "<bos>",
|
| 1754 |
+
"clean_up_tokenization_spaces": false,
|
| 1755 |
+
"eos_token": "<eos>",
|
| 1756 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 1757 |
+
"pad_token": "<pad>",
|
| 1758 |
+
"processor_class": "PaliGemmaProcessor",
|
| 1759 |
+
"sp_model_kwargs": {},
|
| 1760 |
+
"spaces_between_special_tokens": false,
|
| 1761 |
+
"tokenizer_class": "GemmaTokenizer",
|
| 1762 |
+
"unk_token": "<unk>",
|
| 1763 |
+
"use_default_system_prompt": false
|
| 1764 |
+
}
|