Adding Evaluation Results (#10)
Browse files- Adding Evaluation Results (4985d4e235a8166abba352e3b909c16884eabe32)
Co-authored-by: Open LLM Leaderboard PR Bot <[email protected]>
README.md
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
---
|
| 2 |
license: other
|
| 3 |
-
license_name: microsoft-research-license
|
| 4 |
-
license_link: https://huggingface.co/WizardLM/WizardMath-7B-V1.1/resolve/main/LICENSE
|
| 5 |
tags:
|
| 6 |
- moe
|
| 7 |
- merge
|
|
@@ -11,6 +9,111 @@ tags:
|
|
| 11 |
- beowolx/CodeNinja-1.0-OpenChat-7B
|
| 12 |
- maywell/PiVoT-0.1-Starling-LM-RP
|
| 13 |
- WizardLM/WizardMath-7B-V1.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
---
|
| 15 |
|
| 16 |

|
|
@@ -181,4 +284,17 @@ print(outputs[0]["generated_text"])
|
|
| 181 |
|
| 182 |
Output:
|
| 183 |
|
| 184 |
-
> A Mixture of Experts (ME) is a machine learning technique that combines multiple expert models to make predictions or decisions. Each expert model is specialized in a different aspect of the problem, and their outputs are combined to produce a more accurate and robust solution. This approach allows the model to leverage the strengths of individual experts and compensate for their weaknesses, improving overall performance.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: other
|
|
|
|
|
|
|
| 3 |
tags:
|
| 4 |
- moe
|
| 5 |
- merge
|
|
|
|
| 9 |
- beowolx/CodeNinja-1.0-OpenChat-7B
|
| 10 |
- maywell/PiVoT-0.1-Starling-LM-RP
|
| 11 |
- WizardLM/WizardMath-7B-V1.1
|
| 12 |
+
license_name: microsoft-research-license
|
| 13 |
+
license_link: https://huggingface.co/WizardLM/WizardMath-7B-V1.1/resolve/main/LICENSE
|
| 14 |
+
model-index:
|
| 15 |
+
- name: Beyonder-4x7B-v2
|
| 16 |
+
results:
|
| 17 |
+
- task:
|
| 18 |
+
type: text-generation
|
| 19 |
+
name: Text Generation
|
| 20 |
+
dataset:
|
| 21 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
| 22 |
+
type: ai2_arc
|
| 23 |
+
config: ARC-Challenge
|
| 24 |
+
split: test
|
| 25 |
+
args:
|
| 26 |
+
num_few_shot: 25
|
| 27 |
+
metrics:
|
| 28 |
+
- type: acc_norm
|
| 29 |
+
value: 68.77
|
| 30 |
+
name: normalized accuracy
|
| 31 |
+
source:
|
| 32 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
| 33 |
+
name: Open LLM Leaderboard
|
| 34 |
+
- task:
|
| 35 |
+
type: text-generation
|
| 36 |
+
name: Text Generation
|
| 37 |
+
dataset:
|
| 38 |
+
name: HellaSwag (10-Shot)
|
| 39 |
+
type: hellaswag
|
| 40 |
+
split: validation
|
| 41 |
+
args:
|
| 42 |
+
num_few_shot: 10
|
| 43 |
+
metrics:
|
| 44 |
+
- type: acc_norm
|
| 45 |
+
value: 86.8
|
| 46 |
+
name: normalized accuracy
|
| 47 |
+
source:
|
| 48 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
| 49 |
+
name: Open LLM Leaderboard
|
| 50 |
+
- task:
|
| 51 |
+
type: text-generation
|
| 52 |
+
name: Text Generation
|
| 53 |
+
dataset:
|
| 54 |
+
name: MMLU (5-Shot)
|
| 55 |
+
type: cais/mmlu
|
| 56 |
+
config: all
|
| 57 |
+
split: test
|
| 58 |
+
args:
|
| 59 |
+
num_few_shot: 5
|
| 60 |
+
metrics:
|
| 61 |
+
- type: acc
|
| 62 |
+
value: 65.1
|
| 63 |
+
name: accuracy
|
| 64 |
+
source:
|
| 65 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
| 66 |
+
name: Open LLM Leaderboard
|
| 67 |
+
- task:
|
| 68 |
+
type: text-generation
|
| 69 |
+
name: Text Generation
|
| 70 |
+
dataset:
|
| 71 |
+
name: TruthfulQA (0-shot)
|
| 72 |
+
type: truthful_qa
|
| 73 |
+
config: multiple_choice
|
| 74 |
+
split: validation
|
| 75 |
+
args:
|
| 76 |
+
num_few_shot: 0
|
| 77 |
+
metrics:
|
| 78 |
+
- type: mc2
|
| 79 |
+
value: 60.68
|
| 80 |
+
source:
|
| 81 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
| 82 |
+
name: Open LLM Leaderboard
|
| 83 |
+
- task:
|
| 84 |
+
type: text-generation
|
| 85 |
+
name: Text Generation
|
| 86 |
+
dataset:
|
| 87 |
+
name: Winogrande (5-shot)
|
| 88 |
+
type: winogrande
|
| 89 |
+
config: winogrande_xl
|
| 90 |
+
split: validation
|
| 91 |
+
args:
|
| 92 |
+
num_few_shot: 5
|
| 93 |
+
metrics:
|
| 94 |
+
- type: acc
|
| 95 |
+
value: 80.9
|
| 96 |
+
name: accuracy
|
| 97 |
+
source:
|
| 98 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
| 99 |
+
name: Open LLM Leaderboard
|
| 100 |
+
- task:
|
| 101 |
+
type: text-generation
|
| 102 |
+
name: Text Generation
|
| 103 |
+
dataset:
|
| 104 |
+
name: GSM8k (5-shot)
|
| 105 |
+
type: gsm8k
|
| 106 |
+
config: main
|
| 107 |
+
split: test
|
| 108 |
+
args:
|
| 109 |
+
num_few_shot: 5
|
| 110 |
+
metrics:
|
| 111 |
+
- type: acc
|
| 112 |
+
value: 71.72
|
| 113 |
+
name: accuracy
|
| 114 |
+
source:
|
| 115 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
| 116 |
+
name: Open LLM Leaderboard
|
| 117 |
---
|
| 118 |
|
| 119 |

|
|
|
|
| 284 |
|
| 285 |
Output:
|
| 286 |
|
| 287 |
+
> A Mixture of Experts (ME) is a machine learning technique that combines multiple expert models to make predictions or decisions. Each expert model is specialized in a different aspect of the problem, and their outputs are combined to produce a more accurate and robust solution. This approach allows the model to leverage the strengths of individual experts and compensate for their weaknesses, improving overall performance.
|
| 288 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
| 289 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__Beyonder-4x7B-v2)
|
| 290 |
+
|
| 291 |
+
| Metric |Value|
|
| 292 |
+
|---------------------------------|----:|
|
| 293 |
+
|Avg. |72.33|
|
| 294 |
+
|AI2 Reasoning Challenge (25-Shot)|68.77|
|
| 295 |
+
|HellaSwag (10-Shot) |86.80|
|
| 296 |
+
|MMLU (5-Shot) |65.10|
|
| 297 |
+
|TruthfulQA (0-shot) |60.68|
|
| 298 |
+
|Winogrande (5-shot) |80.90|
|
| 299 |
+
|GSM8k (5-shot) |71.72|
|
| 300 |
+
|