mitkaj commited on
Commit
637b1de
·
verified ·
1 Parent(s): ae3a30d

Upload fine-tuned Wav2Vec2BERT CTC model for Czech ASR

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - cs
4
+ - en
5
+ tags:
6
+ - audio
7
+ - automatic-speech-recognition
8
+ - ctc
9
+ - wav2vec2-bert
10
+ - czech
11
+ license: mit
12
+ datasets:
13
+ - common-voice
14
+ metric:
15
+ - wer
16
+ ---
17
+
18
+ # mitkaj/w2v2BERT-CZ-CV-17.0
19
+
20
+ This is a fine-tuned Wav2Vec2BERT model for Czech Automatic Speech Recognition (ASR) using CTC loss.
21
+
22
+ ## Model Details
23
+
24
+ - **Base Model**: facebook/w2v-bert-2.0
25
+ - **Architecture**: Wav2Vec2BertForCTC
26
+ - **Training**: Fine-tuned on Czech Common Voice dataset
27
+ - **Loss Function**: CTC (Connectionist Temporal Classification)
28
+ - **Vocab Size**: 51 tokens
29
+
30
+ ## Training Summary
31
+
32
+ - **Training Epochs**: 19.97
33
+ - **Final Training Loss**: 0.0305
34
+ - **Final Evaluation Loss**: 0.1450
35
+ - **Final WER**: 0.0583 (5.83%)
36
+ - **Total Training Time**: 5.1 hours
37
+ - **Total FLOPS**: 79819834495052513280 GF
38
+
39
+ ## Usage
40
+
41
+ ```python
42
+ from transformers import AutoProcessor, AutoModelForCTC
43
+ import torch
44
+
45
+ # Load model and processor
46
+ processor = AutoProcessor.from_pretrained("mitkaj/w2v2BERT-CZ-CV-17.0")
47
+ model = AutoModelForCTC.from_pretrained("mitkaj/w2v2BERT-CZ-CV-17.0")
48
+
49
+ # Process audio
50
+ inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
51
+
52
+ # Get logits
53
+ with torch.no_grad():
54
+ logits = model(**inputs).logits
55
+
56
+ # Decode
57
+ predicted_ids = torch.argmax(logits, dim=-1)
58
+ transcription = processor.batch_decode(predicted_ids)
59
+ ```
60
+
61
+ ## Training
62
+
63
+ This model was trained using the CTC approach on Czech speech data.
64
+
65
+ ## Performance
66
+
67
+ The model was evaluated on Czech test data using WER (Word Error Rate) metric.
68
+
69
+
70
+
71
+ ## Citation
72
+
73
+ If you use this model, please cite the original Wav2Vec2BERT paper and this fine-tuned version.