Lmxyy commited on
Commit
fd71fb0
·
verified ·
1 Parent(s): f912813

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: black-forest-labs/FLUX.1-schnell
3
+ base_model_relation: quantized
4
+ datasets:
5
+ - mit-han-lab/svdquant-datasets
6
+ language:
7
+ - en
8
+ library_name: diffusers
9
+ license: apache-2.0
10
+ pipeline_tag: text-to-image
11
+ tags:
12
+ - text-to-image
13
+ - SVDQuant
14
+ - FLUX.1-schnell
15
+ - FLUX.1
16
+ - Diffusion
17
+ - Quantization
18
+ - ICLR2025
19
+
20
+ ---
21
+ **This repository has been migrated to https://huggingface.co/nunchaku-tech/nunchaku-flux.1-schnell and will be hidden in December 2025.**
22
+
23
+ <p align="center" style="border-radius: 10px">
24
+ <img src="https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/assets/nunchaku.svg" width="30%" alt="Nunchaku Logo"/>
25
+ </p>
26
+
27
+ # Model Card for nunchaku-flux.1-schnell
28
+
29
+ ![visual](https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/assets/teaser.jpg)
30
+ This repository contains Nunchaku-quantized versions of [FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell), designed to generate high-quality images from text prompts. It is optimized for efficient inference while maintaining minimal loss in performance.
31
+
32
+ ## Model Details
33
+
34
+ ### Model Description
35
+
36
+ - **Developed by:** Nunchaku Team
37
+ - **Model type:** text-to-image
38
+ - **License:** apache-2.0
39
+ - **Quantized from model:** [FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell)
40
+
41
+ ### Model Files
42
+
43
+ - [`svdq-int4_r32-flux.1-schnell.safetensors`](./svdq-int4_r32-flux.1-schnell.safetensors): SVDQuant quantized INT4 FLUX.1-schnell model. For users with non-Blackwell GPUs (pre-50-series).
44
+ - [`svdq-fp4_r32-flux.1-schnell.safetensors`](./svdq-fp4_r32-flux.1-schnell.safetensors): SVDQuant quantized NVFP4 FLUX.1-schnell model. For users with Blackwell GPUs (50-series).
45
+
46
+
47
+ ### Model Sources
48
+
49
+ - **Inference Engine:** [nunchaku](https://github.com/nunchaku-tech/nunchaku)
50
+ - **Quantization Library:** [deepcompressor](https://github.com/nunchaku-tech/deepcompressor)
51
+ - **Paper:** [SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models](http://arxiv.org/abs/2411.05007)
52
+ - **Demo:** [svdquant.mit.edu](https://svdquant.mit.edu)
53
+
54
+ ## Usage
55
+
56
+ - Diffusers Usage: See [flux.1-schnell.py](https://github.com/nunchaku-tech/nunchaku/blob/main/examples/flux.1-schnell.py). Check our [tutorial](https://nunchaku.tech/docs/nunchaku/usage/basic_usage.html) for more advanced usage.
57
+ - ComfyUI Usage: See [nunchaku-flux.1-schnell.json](https://nunchaku.tech/docs/ComfyUI-nunchaku/workflows/t2i.html#nunchaku-flux-1-schnell-json).
58
+
59
+ ## Performance
60
+
61
+ ![performance](https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/assets/efficiency.jpg)
62
+
63
+ ## Citation
64
+
65
+ ```bibtex
66
+ @inproceedings{
67
+ li2024svdquant,
68
+ title={SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models},
69
+ author={Li*, Muyang and Lin*, Yujun and Zhang*, Zhekai and Cai, Tianle and Li, Xiuyu and Guo, Junxian and Xie, Enze and Meng, Chenlin and Zhu, Jun-Yan and Han, Song},
70
+ booktitle={The Thirteenth International Conference on Learning Representations},
71
+ year={2025}
72
+ }
73
+ ```