File size: 6,930 Bytes
e177272
 
 
 
 
 
 
bbae113
1e637f2
 
26266df
1e637f2
 
e2d44c0
 
e177272
41f0ae2
deedc86
a60832c
deedc86
a60832c
deedc86
a60832c
deedc86
 
 
 
 
a60832c
deedc86
a60832c
deedc86
a60832c
deedc86
e177272
deedc86
 
 
 
e177272
deedc86
e177272
deedc86
 
 
e177272
deedc86
 
e177272
deedc86
e177272
deedc86
 
 
 
 
e177272
deedc86
e177272
 
deedc86
 
 
 
 
e177272
deedc86
 
 
5c79a37
858fdc2
deedc86
 
858fdc2
deedc86
858fdc2
deedc86
858fdc2
deedc86
858fdc2
deedc86
 
5c79a37
deedc86
858fdc2
 
deedc86
858fdc2
deedc86
 
 
 
858fdc2
deedc86
 
 
858fdc2
 
deedc86
 
858fdc2
deedc86
858fdc2
deedc86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
858fdc2
deedc86
858fdc2
deedc86
 
5c79a37
deedc86
858fdc2
 
deedc86
858fdc2
deedc86
 
 
 
858fdc2
deedc86
858fdc2
deedc86
 
 
 
 
858fdc2
deedc86
858fdc2
5c79a37
deedc86
 
5c79a37
 
deedc86
 
 
 
 
858fdc2
deedc86
858fdc2
deedc86
 
858fdc2
deedc86
 
 
 
 
858fdc2
5c79a37
deedc86
 
5c79a37
deedc86
 
5c79a37
deedc86
858fdc2
 
e177272
 
deedc86
e177272
 
 
deedc86
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
language:
- fr
- it
- de
- es
- en
license: apache-2.0
inference:
  parameters:
    temperature: 0.5
widget:
- messages:
  - role: user
    content: What is your favorite condiment?
---

# Model Card for Mixtral-8x7B-Instruct-v0.1

The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested.

For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).

Mixtral-8x7B-Instruct-v0.1 has the following characteristics:
- 46.7B parameters
- 12.9B active parameters
- 32k context window
- 32000 vocab size

## How to use

It is recommended to use `mistralai/Mixtral-8x7B-Instruct-v0.1` with [mistral_inference](https://github.com/mistralai/mistral-inference) and [mistral_common](https://github.com/mistralai/mistral-common). For HF `transformers` code snippets, please keep scrolling.

## Generate with `mistral_inference` and `mistral_common`

### Install dependencies
```
pip install mistral_inference mistral_common
```

### Download model

```py
from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', '8x7B-Instruct-v0.1')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model"], local_dir=mistral_models_path)
```

### Chat

After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using

```
mistral-chat $HOME/mistral_models/8x7B-Instruct-v0.1 --instruct --max_tokens 256
```

### Instruct following

```py
from mistral_inference.model import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest


tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model")
# tokenizer = MistralTokenizer.v1()

model = Transformer.from_folder(mistral_models_path)

completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)
```

### Function calling

```py
from mistral_common.protocol.instruct.tool_calls import Function, Tool
from mistral_inference.model import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest


tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model")
# tokenizer = MistralTokenizer.v1()

model = Transformer.from_folder(mistral_models_path)

completion_request = ChatCompletionRequest(
    tools=[
        Tool(
            function=Function(
                name="get_current_weather",
                description="Get the current weather",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location.",
                        },
                    },
                    "required": ["location", "format"],
                },
            )
        )
    ],
    messages=[
        UserMessage(content="What's the weather like today in Paris?"),
        ],
)

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)
```

## Generate with `transformers`

### Install dependencies
```
pip install transformers
```

### Instruct following

```py
from transformers import AutoModelForCausalLM, AutoTokenizer
 
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
model.to("cuda")

tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

messages_prompt = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True,
)

inputs = tokenizer(tool_use_prompt, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=1000)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(result)
```
Or:
```py
from transformers import pipeline

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
chatbot = pipeline("text-generation", model="mistralai/Mixtral-8x7B-Instruct-v0.1")
result = chatbot(messages)

print(result)
```

## Limitations

The Mistral 8x22B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. 
It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

## The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall