File size: 11,173 Bytes
896c62c
7d332b9
 
 
 
 
5967491
 
7d332b9
 
896c62c
 
7d332b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896c62c
7d332b9
 
 
 
 
 
 
 
 
 
 
 
896c62c
 
7d332b9
896c62c
1dbc2bb
 
 
7d332b9
c9ab6b8
 
7d332b9
c9ab6b8
 
7d332b9
c9ab6b8
 
7d332b9
896c62c
 
 
c9ab6b8
 
1dbc2bb
c9ab6b8
896c62c
 
 
 
 
 
 
 
 
 
 
 
c9ab6b8
896c62c
 
 
 
 
 
 
 
 
c9ab6b8
7d332b9
896c62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d332b9
1dbc2bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d332b9
 
1dbc2bb
 
896c62c
7d332b9
 
 
 
 
 
 
 
 
 
1dbc2bb
 
 
 
 
 
7d332b9
896c62c
7d332b9
 
 
 
 
1dbc2bb
7d332b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896c62c
 
 
7d332b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896c62c
 
 
 
 
7d332b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from typing import Dict, List, Optional, Union, cast

import numpy as np
import torch
from transformers import Qwen2Tokenizer, Qwen2TokenizerFast, Wav2Vec2FeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin
from typing_extensions import Unpack


class MiDashengLMProcessorKwargs(ProcessingKwargs):
    _defaults = {  # type: ignore
        "text_kwargs": {
            "padding": True,
            "padding_side": "left",
        },
        "audio_kwargs": {},
    }


def calculate_mel_frames_dasheng(
    audio_length_samples: int,
    n_fft: int = 512,
    hop_size: int = 160,
    dasheng_subsampling: int = 4,
    center=True,
    model_subsampling: int = 5,
) -> int:
    """Calculate the number of Mel-spectrogram frames."""
    if center:
        audio_length_samples = audio_length_samples + n_fft

    return (
        int(1 + ((audio_length_samples - n_fft) / hop_size))
        // dasheng_subsampling
        // model_subsampling
    )


class MiDashengLMProcessor(ProcessorMixin):
    attributes = ["feature_extractor", "tokenizer"]
    valid_kwargs = [
        "chat_template",
        "audio_token",
        "audio_bos_token",
        "audio_eos_token",
    ]
    feature_extractor_class = "Wav2Vec2FeatureExtractor"
    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")

    def __init__(
        self,
        feature_extractor: Wav2Vec2FeatureExtractor,
        tokenizer: Union[Qwen2Tokenizer, Qwen2TokenizerFast],
        model_subsampling: int = 5,
        chat_template: Optional[Union[str, Dict[str, str]]] = None,
        audio_token: Optional[str] = None,
        audio_bos_token: Optional[str] = None,
        audio_eos_token: Optional[str] = None,
    ):
        assert audio_token is not None or hasattr(tokenizer, "audio_token"), (
            "Either `audio_token` must be provided or tokenizer must have `audio_token` attribute."
        )
        assert audio_bos_token is not None or hasattr(tokenizer, "audio_bos_token"), (
            "Either `audio_bos_token` must be provided or tokenizer must have `audio_bos_token` attribute."
        )
        assert audio_eos_token is not None or hasattr(tokenizer, "audio_eos_token"), (
            "Either `audio_eos_token` must be provided or tokenizer must have `audio_eos_token` attribute."
        )
        assert not feature_extractor.do_normalize, (
            "This model does not use normalization. Please set `do_normalize=False` in the feature extractor."
        )

        if chat_template is None:
            chat_template = tokenizer.chat_template

        def get_token(token_name: str) -> str:
            if not hasattr(tokenizer, token_name):
                raise ValueError(
                    f"Tokenizer does not have attribute `{token_name}`. "
                    "Please provide it as an argument to the processor."
                )
            token = getattr(tokenizer, token_name)
            if not isinstance(token, str):
                raise TypeError(
                    f"Expected token {token_name} to be a string, but got {type(token)}."
                )
            return token

        self.audio_token = audio_token or get_token("audio_token")
        self.audio_bos_token = audio_bos_token or get_token("audio_bos_token")
        self.audio_eos_token = audio_eos_token or get_token("audio_eos_token")

        self.audio_token_id = cast(
            int, tokenizer.convert_tokens_to_ids(self.audio_token)
        )
        self.model_subsampling = model_subsampling
        self.sampling_rate = feature_extractor.sampling_rate

        super().__init__(feature_extractor, tokenizer, chat_template=chat_template)
        self.feature_extractor: Wav2Vec2FeatureExtractor
        self.tokenizer: Union[Qwen2Tokenizer, Qwen2TokenizerFast]
        self.chat_template: Optional[Union[str, Dict[str, str]]]

    def _process_messages_for_chat_template(
        self,
        conversation,
        batch_images,
        batch_videos,
        batch_video_metadata,
        **mm_load_kwargs,
    ):
        if (sr := mm_load_kwargs.get("sampling_rate", None)) is not None:
            if sr != self.sampling_rate:
                raise ValueError(
                    f"This model is trained with a sampling rate of {self.sampling_rate}, "
                    f"but the sampling rate {sr} is used to load audio."
                )
        return super()._process_messages_for_chat_template(
            conversation,
            batch_images,
            batch_videos,
            batch_video_metadata,
            **mm_load_kwargs,
        )

    @classmethod
    def _validate_audio_sample(
        cls,
        sample: Union[np.ndarray, torch.Tensor],
    ) -> np.ndarray:
        if isinstance(sample, torch.Tensor):
            if sample.ndim != 1:
                raise ValueError("Audio tensor must be 1D.")
            return sample.numpy()
        if isinstance(sample, np.ndarray):
            if sample.ndim != 1:
                raise ValueError("Audio array must be 1D.")
            return sample
        if isinstance(sample, str):
            # When passing audio paths through `apply_chat_template`, transformers
            # will attempt to load the audio file, but only succeeds if the path
            # is a valid URL (starting with http:// or https://) or an existing local
            # file. Otherwise, the string is passed as-is. This captures that case and
            # raises an error to inform the user.
            raise TypeError(
                "Expected audio to be a numpy array or torch tensor, but got a string. "
                "If you passed audios through `apply_chat_template`, "
                "make sure the audio paths are valid URLs starting with http:// or https://, "
                "or existing local files."
            )
        raise TypeError(
            f"Expected audio to be a numpy array, torch tensor, or string, but got {type(sample)}."
        )

    def __call__(
        self,
        text: Optional[List[str]] = None,
        audio: Optional[Union[List[np.ndarray], List[torch.Tensor]]] = None,
        **kwargs: Unpack[MiDashengLMProcessorKwargs],
    ) -> BatchFeature:
        if text is None:
            raise ValueError("You need to specify `text` input to process.")
        elif isinstance(text, str):
            text = [text]
        elif not isinstance(text, list) and not isinstance(text[0], str):
            raise ValueError(
                "Invalid input text. Please provide a string, or a list of strings"
            )

        if (
            kwargs.get("images", None) is not None
            or kwargs.get("videos", None) is not None
        ):
            raise ValueError("This model does not support images or videos.")

        output_kwargs = self._merge_kwargs(
            MiDashengLMProcessorKwargs,  # type: ignore # Bad type hint in transformers
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        if audio is not None:
            audio = [self._validate_audio_sample(sample) for sample in audio]
            # ensure we have as much audios as audio tokens
            num_audio_tokens = sum(sample.count(self.audio_token) for sample in text)
            num_audios = 1 if type(audio) is np.ndarray else len(audio)
            if num_audio_tokens != num_audios:
                raise ValueError(
                    f"Found {num_audio_tokens} {self.audio_token} token{'s' if num_audio_tokens > 1 else ''} in provided text but received {num_audios} audio{'s' if num_audios > 1 else ''}"
                )

            # Some kwargs should not be changed so we can expand text with audio tokens below
            output_kwargs["audio_kwargs"]["return_attention_mask"] = True
            output_kwargs["audio_kwargs"]["padding"] = True
            output_kwargs["audio_kwargs"]["return_tensors"] = "pt"

            # + Padding
            audio_inputs = self.feature_extractor(
                audio,
                sampling_rate=self.sampling_rate,
                **output_kwargs["audio_kwargs"],
            )

            # remove attention mask, dasheng uses lengths
            audio_feature_mask = audio_inputs.pop("attention_mask")

            expanded_text = []
            audio_lengths = audio_feature_mask.sum(-1).tolist()
            audio_inputs["audio_length"] = torch.tensor(audio_lengths).long()

            for sample in text:
                replace_str = []
                while self.audio_token in sample:
                    audio_length = audio_lengths.pop(0)
                    num_audio_tokens = calculate_mel_frames_dasheng(
                        audio_length, model_subsampling=self.model_subsampling
                    )

                    expanded_audio_token = self.audio_token * num_audio_tokens

                    audio_token_start_idx = sample.find(self.audio_token)
                    audio_token_end_idx = audio_token_start_idx + len(self.audio_token)

                    has_bos = (
                        sample[
                            audio_token_start_idx
                            - len(self.audio_bos_token) : audio_token_start_idx
                        ]
                        == self.audio_bos_token
                    )
                    has_eos = (
                        sample[
                            audio_token_end_idx : audio_token_end_idx
                            + len(self.audio_eos_token)
                        ]
                        == self.audio_eos_token
                    )

                    # Check if this audio token is surrounded by bos/eos tokens
                    if not has_bos and not has_eos:
                        expanded_audio_token = (
                            self.audio_bos_token
                            + expanded_audio_token
                            + self.audio_eos_token
                        )

                    replace_str.append(expanded_audio_token)
                    sample = sample.replace(self.audio_token, "<placeholder>", 1)

                while "<placeholder>" in sample:
                    sample = sample.replace("<placeholder>", replace_str.pop(0), 1)
                expanded_text.append(sample)
            text = expanded_text

        return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", "pt")
        inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
        self._check_special_mm_tokens(
            text,
            BatchFeature(inputs),  # type: ignore
            modalities=["audio"],
        )

        if audio is not None:
            inputs.update(audio_inputs)

        return BatchFeature(data={**inputs}, tensor_type=return_tensors)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        feature_extractor_input_names = self.feature_extractor.model_input_names
        return list(
            dict.fromkeys(
                tokenizer_input_names + feature_extractor_input_names + ["audio_length"]
            )
        )