File size: 21,184 Bytes
896c62c
7d332b9
44519c3
5967491
7d332b9
 
 
 
 
44519c3
896c62c
44519c3
 
 
 
 
 
 
db68c1d
7d332b9
4041525
7d332b9
896c62c
7d332b9
896c62c
 
 
 
 
 
 
7d332b9
 
 
 
 
 
896c62c
 
 
7d332b9
 
 
 
 
 
896c62c
 
 
7d332b9
 
 
 
 
 
 
 
896c62c
 
 
 
7d332b9
 
 
963f924
7d332b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
963f924
7d332b9
 
 
4041525
7d332b9
 
 
 
 
 
 
 
 
 
 
896c62c
7d332b9
 
 
963f924
7d332b9
 
 
 
 
 
 
 
4041525
7d332b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
963f924
7d332b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4041525
7d332b9
 
 
 
 
 
 
 
1dbc2bb
7d332b9
 
896c62c
 
7d332b9
 
 
 
 
 
 
 
 
 
896c62c
4041525
7d332b9
 
 
 
 
 
 
 
 
963f924
 
 
 
 
 
89cff4d
7d332b9
 
 
4041525
c9ab6b8
963f924
7d332b9
c9ab6b8
 
7d332b9
44519c3
 
 
963f924
7d332b9
 
 
44519c3
 
 
 
 
 
 
 
7d332b9
 
 
 
c9ab6b8
7d332b9
 
44519c3
 
 
 
7d332b9
44519c3
7d332b9
 
 
44519c3
7d332b9
 
44519c3
7d332b9
 
44519c3
7d332b9
4041525
44519c3
 
 
 
 
 
 
7d332b9
44519c3
7d332b9
896c62c
7d332b9
c9ab6b8
 
963f924
 
 
 
 
7d332b9
 
 
 
 
 
 
 
 
 
963f924
 
 
 
7d332b9
 
 
 
 
 
 
44519c3
7d332b9
 
 
44519c3
 
 
896c62c
7d332b9
 
 
c9ab6b8
7d332b9
c9ab6b8
7d332b9
 
 
 
 
 
 
 
 
 
 
44519c3
 
 
 
 
 
7d332b9
 
 
44519c3
7d332b9
44519c3
7d332b9
 
 
44519c3
7d332b9
 
44519c3
963f924
 
 
 
 
 
 
7d332b9
44519c3
 
963f924
44519c3
963f924
7d332b9
 
44519c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d332b9
 
44519c3
4041525
963f924
896c62c
 
 
 
7d332b9
44519c3
4041525
44519c3
5e3b785
 
 
 
44519c3
 
 
c9ab6b8
44519c3
 
 
 
 
 
7d332b9
963f924
7d332b9
 
963f924
 
 
 
 
 
 
 
 
 
db68c1d
896c62c
 
 
 
 
 
 
 
 
44519c3
963f924
896c62c
 
963f924
 
 
 
 
 
44519c3
 
 
 
 
963f924
 
 
 
 
 
44519c3
963f924
 
 
44519c3
4041525
963f924
44519c3
 
 
 
 
7d332b9
 
4041525
 
5e3b785
 
 
 
 
7d332b9
4041525
7d332b9
 
963f924
 
4041525
963f924
4041525
7d332b9
44519c3
c9ab6b8
 
 
4041525
c9ab6b8
 
7d332b9
 
44519c3
7d332b9
5e3b785
 
 
 
 
 
44519c3
 
 
 
 
 
7d332b9
 
 
 
44519c3
7d332b9
0939826
44519c3
0939826
 
 
44519c3
0939826
44519c3
 
 
 
 
0939826
 
 
44519c3
 
963f924
896c62c
963f924
896c62c
 
0939826
 
 
 
 
963f924
0939826
 
 
 
 
 
 
44519c3
0939826
 
 
 
 
 
 
 
 
 
 
44519c3
 
 
 
 
 
 
 
 
 
0939826
 
 
 
 
 
 
 
963f924
 
 
0939826
 
 
 
 
 
 
 
44519c3
7d332b9
44519c3
963f924
 
 
44519c3
7d332b9
 
 
 
44519c3
 
 
 
 
7d332b9
0939826
 
 
 
 
 
44519c3
 
 
 
7d332b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import collections
import collections.abc
from dataclasses import dataclass
from typing import Any, Callable, Iterable, List, Optional, Sequence, Tuple, Union, cast

import torch
import torch.nn as nn
import torchaudio.transforms as audio_transforms
from torch import Tensor
from transformers import GenerationMixin, PreTrainedModel
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
    Qwen2_5OmniTextConfig,
)
from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import (
    Qwen2_5OmniThinkerTextModel,
)
from transformers.utils import can_return_tuple

from .configuration_midashenglm import DashengConfig, MiDashengLMConfig

_Tuple2 = Union[int, Tuple[int, int], Sequence[int]]


def _resolve_tuple2(x: _Tuple2) -> Tuple[int, int]:
    if isinstance(x, collections.abc.Sequence):
        assert len(x) == 2, (
            f"Expected a sequence of length 2, got {x} with length {len(x)}"
        )
        return cast(Tuple[int, int], tuple(x))
    return (x, x)


class AudioPatchEmbed(nn.Module):
    def __init__(
        self,
        input_size: _Tuple2 = 64,
        patch_size: _Tuple2 = 16,
        patch_stride: _Tuple2 = 16,
        in_chans: int = 1,
        embed_dim: int = 768,
        norm_layer: Optional[Callable] = None,
        flatten: bool = False,
    ):
        super().__init__()
        self.input_size = _resolve_tuple2(input_size)
        self.patch_size = _resolve_tuple2(patch_size)
        self.patch_stride = _resolve_tuple2(patch_stride)
        self.grid_size = (
            self.input_size[0] // self.patch_stride[0],
            self.input_size[1] // self.patch_stride[1],
        )
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.flatten = flatten

        self.proj = nn.Conv2d(
            in_chans,
            embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_stride,
        )
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)
        if self.flatten:
            x = torch.permute(
                torch.flatten(x, 2, 3), (0, 2, 1)
            )  # rearrange(x, "b c f t -> b (f t) c")
        x = self.norm(x)
        return x


class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class DashengMlp(nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: Optional[int] = None,
        out_features: Optional[int] = None,
        drop: float = 0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = nn.GELU()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class DashengAttention(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        causal: bool = False,
    ):
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim**-0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.causal = causal

    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None):
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        # if mask is not None:
        # # Mask is a tensor of shape [B, T, T]
        # # Different from self.causal == True, the mask might be something like:
        # # [False, False, True]
        # # [False, False, True]
        # # [True, True, True]
        # # We use -inf to pad here, since if we would pad by any number, the entries at rows only containing
        # # [True, True, True] would lead to weights such as: [0.33,0.33,0.33], which is not correct
        if self.causal:
            mask_value = -torch.finfo(attn.dtype).max
            i, j = attn.shape[-2:]
            mask = torch.ones(i, j, device=q.device, dtype=torch.bool).triu(j - i + 1)
            attn = attn.masked_fill(mask, mask_value)
        if mask is not None:
            # mask value as the lowest possible value in fp32
            mask_value = torch.finfo(attn.dtype).min
            # Mask is of shape [1, SRC_LEN]
            attn_mask = mask[:, None, None, :].expand(B, 1, N, N)
            # Mask should be of shape
            # [B,1,Target_len, Source_len]
            attn = attn.masked_fill(attn_mask, mask_value)
        attn = attn.softmax(dim=-1)
        attn = torch.nan_to_num(attn)
        # Only for the case that a mask with all True entries on a row is passed.
        # attn = torch.nan_to_num(attn)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class DashengBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        drop: float = 0.0,
        attn_drop: float = 0.0,
        init_values: Optional[float] = None,
    ):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim, eps=1e-6)
        self.attn = DashengAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        self.ls1 = (
            LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        )

        self.norm2 = nn.LayerNorm(dim, eps=1e-6)
        self.mlp = DashengMlp(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            drop=drop,
        )
        self.ls2 = (
            LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        )

    # Kwargs usually has a mask parameter that is passed to Attention
    def forward(
        self,
        x: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        x = x + self.ls1(self.attn(self.norm1(x), mask))
        x = x + self.ls2(self.mlp(self.norm2(x)))
        return x


class DashengAudioTransformer(PreTrainedModel):
    config_class = DashengConfig
    supports_gradient_checkpointing = True

    def __init__(self, config: DashengConfig):
        super().__init__(config)

        self.target_length = config.target_length
        self.embed_dim = config.embed_dim
        self.hop_length = config.hop_length
        self.gradient_checkpointing = False

        self.front_end = nn.Sequential(
            audio_transforms.MelSpectrogram(
                f_min=config.f_min,
                f_max=config.f_max,
                center=config.center,
                win_length=config.win_length,
                hop_length=config.hop_length,
                sample_rate=config.sample_rate,
                n_fft=config.n_fft,
                n_mels=config.n_mels,
            ),
            audio_transforms.AmplitudeToDB(top_db=120),
        )

        self.init_bn = nn.BatchNorm2d(config.n_mels, momentum=0.01)

        self.patch_embed = AudioPatchEmbed(
            input_size=(config.n_mels, config.target_length),
            embed_dim=config.embed_dim,
            in_chans=config.input_channels,
            patch_size=config.patch_size,
            flatten=False,
            patch_stride=config.patch_stride,
        )

        self.time_pos_embed = nn.Parameter(
            torch.randn(1, config.embed_dim, 1, self.patch_embed.grid_size[1]) * 0.02
        )
        self.freq_pos_embed = nn.Parameter(
            torch.randn(1, config.embed_dim, self.patch_embed.grid_size[0], 1) * 0.02
        )

        self.pos_drop = nn.Dropout(p=config.drop_rate)
        self.blocks = nn.ModuleList(
            DashengBlock(
                dim=config.embed_dim,
                num_heads=config.num_heads,
                mlp_ratio=config.mlp_ratio,
                qkv_bias=config.qkv_bias,
                init_values=config.init_values,
                drop=config.drop_rate,
                attn_drop=config.attn_drop_rate,
            )
            for i in range(config.depth)
        )
        self.norm = nn.LayerNorm(config.embed_dim, eps=1e-6)

        self.post_init()

    def forward_features(
        self,
        x: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        t = x.shape[-1]
        x = x + self.time_pos_embed[:, :, :, :t]
        x = (
            x + self.freq_pos_embed[:, :, :, :]
        )  # Just to support __getitem__ in posembed
        x = torch.permute(
            torch.flatten(x, 2, 3), (0, 2, 1)
        )  # rearrange(x, "b c f t -> b (f t) c")
        x = self.pos_drop(x)
        for block in self.blocks:
            if self.gradient_checkpointing and self.training:
                x = self._gradient_checkpointing_func(block, x, mask)
            else:
                x = block(x, mask)
        x = self.norm(x)
        return x

    def _to_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
        batch_size = len(lengths)
        idx = torch.arange(max_length, device=lengths.device)
        idx = idx.repeat(batch_size).view(batch_size, max_length)
        mask = (idx < lengths.unsqueeze(-1)).bool()
        return mask

    def forward(
        self,
        x: torch.Tensor,
        x_length: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        x = self.front_end(x)
        target_length_in_patches = self.target_length // 4
        x = x.unsqueeze(1)
        x = torch.permute(x, (0, 2, 1, 3))
        x = self.init_bn(x)
        x = torch.permute(x, (0, 2, 1, 3))

        x = self.patch_embed(x)
        t = x.shape[-1]

        input_splits = x.split(target_length_in_patches, dim=-1)

        if x_length is not None:
            assert len(x_length) == len(x), (
                "batchsizes of input x and x_length need to be same"
            )
            assert x_length.ndim == 1, "Lengths are of size (B,)"
            scaled_lengths = (x_length / (self.hop_length * 4)).long()
            mask = self._to_mask(max_length=t, lengths=scaled_lengths)
            split_masks = mask.logical_not().split(target_length_in_patches, dim=-1)
        else:
            mask = None
            split_masks = [None] * len(input_splits)

        outputs = []

        for split_x, split_mask in zip(input_splits, split_masks):
            forward_kwargs = {}
            forward_kwargs["mask"] = split_mask
            split_x = self.forward_features(split_x, **forward_kwargs)
            outputs.append(split_x)
        x = torch.cat(outputs, dim=1)
        return x, mask


class AudioProjectorSubsample(nn.Module):
    def __init__(
        self,
        in_dim: int,
        out_dim: int,
        downsample_rate=5,
        dtype: Optional[torch.dtype] = None,
    ):
        super().__init__()
        self.k = downsample_rate
        self.net = nn.Sequential(
            nn.Linear(in_dim * self.k, out_dim, dtype=dtype),
            nn.GELU(),
            nn.Linear(out_dim, out_dim, dtype=dtype),
        )

    def forward(self, x, mask=None):
        batch_size, seq_len, dim = x.shape
        num_frames_to_discard = seq_len % self.k
        if num_frames_to_discard > 0:
            x = x[:, :-num_frames_to_discard, :]
            if mask is not None:
                mask = mask[:, :-num_frames_to_discard]
        if mask is None:
            mask = torch.ones(x.shape[:-1], dtype=torch.long, device=x.device)
        x = x.reshape(
            batch_size, -1, self.k * dim
        )  # rearrange(x, "b (s k) d -> b s (k d)", k=self.k)
        x = self.net(x)
        mask = mask.reshape(
            batch_size, -1, self.k
        )  # rearrange(mask, "b (s k) -> b s k", k=self.k)
        mask = mask.any(dim=-1).long()
        return x, mask


@dataclass
class Qwen25OmniTextModelOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    past_key_values: Optional[Cache] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


class Qwen25OmniThinkerTextOnlyDecoder(PreTrainedModel, GenerationMixin):
    config_class = Qwen2_5OmniTextConfig
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_static_cache = True

    def __init__(self, config: Qwen2_5OmniTextConfig):
        super().__init__(config)
        self.model = Qwen2_5OmniThinkerTextModel._from_config(config)
        self.lm_head = nn.Linear(
            config.hidden_size,
            config.vocab_size,
            bias=False,
        )
        self.post_init()

    @can_return_tuple
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        labels: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[Tuple, Qwen25OmniTextModelOutput]:
        if attention_mask is not None and position_ids is None:
            position_ids = (
                attention_mask.long()
                .cumsum(dim=-1)
                .masked_fill_(attention_mask == 0, 1)
                - 1
            )

        outputs: BaseModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            cache_position=cache_position,
            return_dict=True,
        )
        hidden_states = outputs.last_hidden_state
        logits = self.lm_head(hidden_states)

        loss = (
            self.loss_function(
                logits=logits,
                labels=labels,
                vocab_size=self.config.vocab_size,
                **kwargs,
            )
            if labels is not None
            else None
        )

        return Qwen25OmniTextModelOutput(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class MiDashengLMModel(PreTrainedModel):
    config_class = MiDashengLMConfig
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_static_cache = True
    supports_gradient_checkpointing = True

    def __init__(self, config: MiDashengLMConfig):
        super().__init__(config)

        self.audio_token_id = config.audio_token_id

        self.audio_encoder = DashengAudioTransformer._from_config(
            config.audio_encoder_config,
        )
        self.audio_projector = AudioProjectorSubsample(
            self.audio_encoder.embed_dim,
            config.text_config.hidden_size,
            config.subsample_factor,
        )
        self.decoder = Qwen25OmniThinkerTextOnlyDecoder._from_config(
            config.text_config,
            attn_implementation=config._attn_implementation,
        )

        self.post_init()

    def get_input_embeddings(self):
        return self.decoder.model.embed_tokens

    def get_output_embeddings(self):
        return self.decoder.lm_head

    def _forward_audio_encoder(
        self,
        audios: torch.Tensor,
        audio_length: Optional[Iterable[int]],
    ) -> torch.Tensor:
        encoder_out, encoder_atts = self.audio_encoder(audios, audio_length)

        # audio projector
        encoder_out, encoder_atts = self.audio_projector(encoder_out, encoder_atts)

        return encoder_out

    def _prepare_inputs_embeds(
        self,
        input_ids: Optional[torch.Tensor],
        input_values: Optional[torch.Tensor],
        inputs_embeds: Optional[torch.Tensor],
        audio_length: Optional[Iterable[int]] = None,
    ) -> torch.Tensor:
        if input_ids is not None:
            if inputs_embeds is not None:
                raise ValueError(
                    "Both `inputs_embeds` and `input_ids` are passed. Please pass only one of them."
                )
            inputs_embeds = cast(
                torch.Tensor, self.decoder.model.embed_tokens(input_ids)
            )

            if input_values is not None:
                if self.audio_token_id is None:
                    raise ValueError(
                        "Audio input is provided, but `audio_token_id` is not configured."
                    )

                audio_embeddings = self._forward_audio_encoder(
                    input_values,
                    audio_length=audio_length,
                ).to(inputs_embeds.dtype)

                audio_mask = (input_ids == self.audio_token_id).flatten()
                diff = torch.diff(
                    audio_mask.long(),
                    prepend=torch.zeros(
                        (1,),
                        dtype=torch.long,
                        device=audio_mask.device,
                    ),
                )
                audio_span_starts = (diff == 1).nonzero()
                audio_span_ends = (diff == -1).nonzero()

                embeds_view = inputs_embeds.view(-1, inputs_embeds.shape[-1])
                for span_start, span_end, audio in zip(
                    audio_span_starts,
                    audio_span_ends,
                    audio_embeddings,
                    strict=True,
                ):
                    embeds_view[span_start:span_end] = audio[: span_end - span_start]
        else:
            if inputs_embeds is None:
                raise ValueError(
                    "Either `input_ids` or `inputs_embeds` must be passed."
                )
            if input_values is not None:
                raise ValueError(
                    "Cannot pass `input_values` when `inputs_embeds` is provided."
                )

        return inputs_embeds

    def forward(
        self,
        input_ids: Optional[Tensor] = None,
        input_values: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        audio_length: Optional[Iterable[int]] = None,
        attention_mask: Optional[Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        **kwargs: Any,
    ):
        inputs_embeds = self._prepare_inputs_embeds(
            input_ids=input_ids,
            input_values=input_values,
            inputs_embeds=inputs_embeds,
            audio_length=audio_length,
        )
        return self.decoder(
            input_ids=None,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            labels=labels,
            **kwargs,
        )

    def generate(
        self,
        input_ids: Optional[Tensor] = None,
        input_values: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        audio_length: Optional[Iterable[int]] = None,
        **kwargs,
    ):
        inputs_embeds = self._prepare_inputs_embeds(
            input_ids=input_ids,
            input_values=input_values,
            inputs_embeds=inputs_embeds,
            audio_length=audio_length,
        )
        return self.decoder.generate(
            inputs_embeds=inputs_embeds,
            generation_config=kwargs.pop("generation_config", self.generation_config),
            **kwargs,
        )