Delete mixtral-patch.py
Browse files- mixtral-patch.py +0 -187
mixtral-patch.py
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
# Copyright (C) 2025 Arcee AI
|
2 |
-
#
|
3 |
-
# This software is free software: you can redistribute it and/or
|
4 |
-
# modify it under the terms of the GNU Lesser General Public License as
|
5 |
-
# published by the Free Software Foundation, either version 3 of the
|
6 |
-
# License, or (at your option) any later version.
|
7 |
-
#
|
8 |
-
# This software is distributed in the hope that it will be useful, but
|
9 |
-
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
10 |
-
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
11 |
-
# Lesser General Public License for more details.
|
12 |
-
#
|
13 |
-
# You should have received a copy of the GNU Lesser General Public License
|
14 |
-
# along with this program. If not, see http://www.gnu.org/licenses/.
|
15 |
-
|
16 |
-
import logging
|
17 |
-
from typing import List, Optional
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import tqdm
|
21 |
-
import transformers
|
22 |
-
|
23 |
-
from mergekit.architecture import MISTRAL_INFO, WeightInfo
|
24 |
-
from mergekit.moe.arch import MoEOutputArchitecture
|
25 |
-
from mergekit.moe.common import copy_tensor_out, initialize_io, select_dtype
|
26 |
-
from mergekit.moe.config import MoEMergeConfig
|
27 |
-
from mergekit.options import MergeOptions
|
28 |
-
|
29 |
-
|
30 |
-
class MixtralMoE(MoEOutputArchitecture):
|
31 |
-
def name(self) -> str:
|
32 |
-
return "Mixtral"
|
33 |
-
|
34 |
-
def supports_config(
|
35 |
-
self,
|
36 |
-
config: MoEMergeConfig,
|
37 |
-
explain: bool = False,
|
38 |
-
trust_remote_code: bool = False,
|
39 |
-
) -> bool:
|
40 |
-
if config.shared_experts:
|
41 |
-
if explain:
|
42 |
-
logging.warning("Mixtral does not support shared experts")
|
43 |
-
return False
|
44 |
-
|
45 |
-
model_types = []
|
46 |
-
for model_ref in [config.base_model] + [e.source_model for e in config.experts]:
|
47 |
-
model_cfg = model_ref.config(trust_remote_code=trust_remote_code)
|
48 |
-
model_types.append(model_cfg.model_type)
|
49 |
-
|
50 |
-
if len(set(model_types)) != 1:
|
51 |
-
if explain:
|
52 |
-
logging.warning(
|
53 |
-
"Mixtral requires all input models to have the same architecture"
|
54 |
-
)
|
55 |
-
return False
|
56 |
-
if model_types[0] not in ("llama", "mistral"):
|
57 |
-
if explain:
|
58 |
-
logging.warning(
|
59 |
-
"Mixtral requires all input models to be Llama or Mistral models"
|
60 |
-
)
|
61 |
-
return False
|
62 |
-
return True
|
63 |
-
|
64 |
-
def _generate_config(
|
65 |
-
self,
|
66 |
-
base_config: transformers.PretrainedConfig,
|
67 |
-
num_experts: int,
|
68 |
-
shared_experts: Optional[int] = None,
|
69 |
-
experts_per_token: Optional[int] = None,
|
70 |
-
) -> transformers.PretrainedConfig:
|
71 |
-
if shared_experts:
|
72 |
-
raise NotImplementedError("Shared experts not supported for Mixtral output")
|
73 |
-
|
74 |
-
if not isinstance(base_config, transformers.MistralConfig):
|
75 |
-
base_cfg_mistral = transformers.MistralConfig(**base_config.to_dict())
|
76 |
-
base_cfg_mistral.sliding_window = None
|
77 |
-
base_cfg_mistral.max_position_embeddings = (
|
78 |
-
base_config.max_position_embeddings
|
79 |
-
)
|
80 |
-
base_config = base_cfg_mistral
|
81 |
-
|
82 |
-
out_cfg = transformers.MixtralConfig(**base_config.to_dict())
|
83 |
-
out_cfg.architectures = ["MixtralForCausalLM"]
|
84 |
-
out_cfg.num_local_experts = num_experts
|
85 |
-
out_cfg.num_experts_per_tok = experts_per_token or 2
|
86 |
-
out_cfg.sliding_window = None
|
87 |
-
|
88 |
-
if (out_cfg.num_local_experts & (out_cfg.num_local_experts - 1)) != 0:
|
89 |
-
logging.warning(
|
90 |
-
f"Your model has {out_cfg.num_local_experts} experts, which is "
|
91 |
-
"not a power of two. The model will not be usable in llama.cpp."
|
92 |
-
)
|
93 |
-
return out_cfg
|
94 |
-
|
95 |
-
def _remap_weight_name(self, weight: WeightInfo) -> str:
|
96 |
-
if ".mlp." not in weight.name:
|
97 |
-
# Everything but MLP is identical to base Mistral
|
98 |
-
return weight.name
|
99 |
-
|
100 |
-
res = weight.name
|
101 |
-
for needle, replacement in [
|
102 |
-
(".mlp.gate_proj", ".block_sparse_moe.experts.{expert_idx}.w1"),
|
103 |
-
(".mlp.down_proj", ".block_sparse_moe.experts.{expert_idx}.w2"),
|
104 |
-
(".mlp.up_proj", ".block_sparse_moe.experts.{expert_idx}.w3"),
|
105 |
-
]:
|
106 |
-
res = res.replace(needle, replacement)
|
107 |
-
return res
|
108 |
-
|
109 |
-
def _router_weight_name(self, layer_idx: int) -> str:
|
110 |
-
return f"model.layers.{layer_idx}.block_sparse_moe.gate.weight"
|
111 |
-
|
112 |
-
def write_model(
|
113 |
-
self,
|
114 |
-
out_path: str,
|
115 |
-
config: MoEMergeConfig,
|
116 |
-
merge_options: MergeOptions,
|
117 |
-
router_weights: List[torch.Tensor],
|
118 |
-
shared_router_weights: Optional[List[torch.Tensor]] = None,
|
119 |
-
):
|
120 |
-
base_model = config.base_model
|
121 |
-
base_cfg = base_model.config(trust_remote_code=merge_options.trust_remote_code)
|
122 |
-
|
123 |
-
assert len(router_weights) == base_cfg.num_hidden_layers, (
|
124 |
-
f"Expected {base_cfg.num_hidden_layers} router weights, "
|
125 |
-
f"got {len(router_weights)}"
|
126 |
-
)
|
127 |
-
|
128 |
-
out_dtype = select_dtype(config, base_cfg)
|
129 |
-
out_cfg = self._generate_config(
|
130 |
-
base_cfg,
|
131 |
-
len(config.experts),
|
132 |
-
len(config.shared_experts or []),
|
133 |
-
config.experts_per_token,
|
134 |
-
)
|
135 |
-
out_cfg.torch_dtype = out_dtype
|
136 |
-
out_cfg.save_pretrained(out_path)
|
137 |
-
|
138 |
-
loaders, base_loader, writer = initialize_io(config, out_path, merge_options)
|
139 |
-
for weight_info in tqdm.tqdm(
|
140 |
-
MISTRAL_INFO.all_weights(base_cfg),
|
141 |
-
desc="Weights",
|
142 |
-
):
|
143 |
-
tensor_name = self._remap_weight_name(weight_info)
|
144 |
-
if "{expert_idx}" in tensor_name:
|
145 |
-
for expert_index, expert in enumerate(config.experts):
|
146 |
-
expert_name = tensor_name.replace("{expert_idx}", str(expert_index))
|
147 |
-
expert_loader = loaders.get(expert.source_model)
|
148 |
-
copy_tensor_out(
|
149 |
-
weight_info,
|
150 |
-
expert_loader,
|
151 |
-
writer,
|
152 |
-
expert=expert,
|
153 |
-
out_dtype=out_dtype,
|
154 |
-
output_name=expert_name,
|
155 |
-
clone=merge_options.clone_tensors,
|
156 |
-
is_residual="down_proj" in tensor_name,
|
157 |
-
)
|
158 |
-
else:
|
159 |
-
# START FINAL PATCH
|
160 |
-
# Because WeightInfo is a frozen Pydantic model, we cannot modify it.
|
161 |
-
# We must manually load and save the tensor for the tied weights case.
|
162 |
-
if (
|
163 |
-
weight_info.name == "lm_head.weight"
|
164 |
-
and base_cfg.tie_word_embeddings
|
165 |
-
):
|
166 |
-
# If tie_word_embeddings is used, lm_head.weight should not be copied.
|
167 |
-
pass
|
168 |
-
|
169 |
-
else:
|
170 |
-
tensor = base_loader.get_tensor(weight_info.name)
|
171 |
-
writer.save_tensor(
|
172 |
-
weight_info.name, # Always save with the correct destination name
|
173 |
-
tensor.to(dtype=out_dtype),
|
174 |
-
clone=merge_options.clone_tensors,
|
175 |
-
)
|
176 |
-
# END FINAL PATCH
|
177 |
-
|
178 |
-
for layer_idx, weight in enumerate(
|
179 |
-
tqdm.tqdm(router_weights, desc="Router weights")
|
180 |
-
):
|
181 |
-
writer.save_tensor(
|
182 |
-
self._router_weight_name(layer_idx),
|
183 |
-
weight.to(dtype=out_dtype).contiguous(),
|
184 |
-
clone=merge_options.clone_tensors,
|
185 |
-
)
|
186 |
-
|
187 |
-
writer.finalize()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|