|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
from typing import List, Optional |
|
|
|
import torch |
|
import tqdm |
|
import transformers |
|
|
|
from mergekit.architecture import MISTRAL_INFO, WeightInfo |
|
from mergekit.moe.arch import MoEOutputArchitecture |
|
from mergekit.moe.common import copy_tensor_out, initialize_io, select_dtype |
|
from mergekit.moe.config import MoEMergeConfig |
|
from mergekit.options import MergeOptions |
|
|
|
|
|
class MixtralMoE(MoEOutputArchitecture): |
|
def name(self) -> str: |
|
return "Mixtral" |
|
|
|
def supports_config( |
|
self, |
|
config: MoEMergeConfig, |
|
explain: bool = False, |
|
trust_remote_code: bool = False, |
|
) -> bool: |
|
if config.shared_experts: |
|
if explain: |
|
logging.warning("Mixtral does not support shared experts") |
|
return False |
|
|
|
model_types = [] |
|
for model_ref in [config.base_model] + [e.source_model for e in config.experts]: |
|
model_cfg = model_ref.config(trust_remote_code=trust_remote_code) |
|
model_types.append(model_cfg.model_type) |
|
|
|
if len(set(model_types)) != 1: |
|
if explain: |
|
logging.warning( |
|
"Mixtral requires all input models to have the same architecture" |
|
) |
|
return False |
|
if model_types[0] not in ("llama", "mistral"): |
|
if explain: |
|
logging.warning( |
|
"Mixtral requires all input models to be Llama or Mistral models" |
|
) |
|
return False |
|
return True |
|
|
|
def _generate_config( |
|
self, |
|
base_config: transformers.PretrainedConfig, |
|
num_experts: int, |
|
shared_experts: Optional[int] = None, |
|
experts_per_token: Optional[int] = None, |
|
) -> transformers.PretrainedConfig: |
|
if shared_experts: |
|
raise NotImplementedError("Shared experts not supported for Mixtral output") |
|
|
|
if not isinstance(base_config, transformers.MistralConfig): |
|
base_cfg_mistral = transformers.MistralConfig(**base_config.to_dict()) |
|
base_cfg_mistral.sliding_window = None |
|
base_cfg_mistral.max_position_embeddings = ( |
|
base_config.max_position_embeddings |
|
) |
|
base_config = base_cfg_mistral |
|
|
|
out_cfg = transformers.MixtralConfig(**base_config.to_dict()) |
|
out_cfg.architectures = ["MixtralForCausalLM"] |
|
out_cfg.num_local_experts = num_experts |
|
out_cfg.num_experts_per_tok = experts_per_token or 2 |
|
out_cfg.sliding_window = None |
|
|
|
if (out_cfg.num_local_experts & (out_cfg.num_local_experts - 1)) != 0: |
|
logging.warning( |
|
f"Your model has {out_cfg.num_local_experts} experts, which is " |
|
"not a power of two. The model will not be usable in llama.cpp." |
|
) |
|
return out_cfg |
|
|
|
def _remap_weight_name(self, weight: WeightInfo) -> str: |
|
if ".mlp." not in weight.name: |
|
|
|
return weight.name |
|
|
|
res = weight.name |
|
for needle, replacement in [ |
|
(".mlp.gate_proj", ".block_sparse_moe.experts.{expert_idx}.w1"), |
|
(".mlp.down_proj", ".block_sparse_moe.experts.{expert_idx}.w2"), |
|
(".mlp.up_proj", ".block_sparse_moe.experts.{expert_idx}.w3"), |
|
]: |
|
res = res.replace(needle, replacement) |
|
return res |
|
|
|
def _router_weight_name(self, layer_idx: int) -> str: |
|
return f"model.layers.{layer_idx}.block_sparse_moe.gate.weight" |
|
|
|
def write_model( |
|
self, |
|
out_path: str, |
|
config: MoEMergeConfig, |
|
merge_options: MergeOptions, |
|
router_weights: List[torch.Tensor], |
|
shared_router_weights: Optional[List[torch.Tensor]] = None, |
|
): |
|
base_model = config.base_model |
|
base_cfg = base_model.config(trust_remote_code=merge_options.trust_remote_code) |
|
|
|
assert len(router_weights) == base_cfg.num_hidden_layers, ( |
|
f"Expected {base_cfg.num_hidden_layers} router weights, " |
|
f"got {len(router_weights)}" |
|
) |
|
|
|
out_dtype = select_dtype(config, base_cfg) |
|
out_cfg = self._generate_config( |
|
base_cfg, |
|
len(config.experts), |
|
len(config.shared_experts or []), |
|
config.experts_per_token, |
|
) |
|
out_cfg.torch_dtype = out_dtype |
|
out_cfg.save_pretrained(out_path) |
|
|
|
loaders, base_loader, writer = initialize_io(config, out_path, merge_options) |
|
for weight_info in tqdm.tqdm( |
|
MISTRAL_INFO.all_weights(base_cfg), |
|
desc="Weights", |
|
): |
|
tensor_name = self._remap_weight_name(weight_info) |
|
if "{expert_idx}" in tensor_name: |
|
for expert_index, expert in enumerate(config.experts): |
|
expert_name = tensor_name.replace("{expert_idx}", str(expert_index)) |
|
expert_loader = loaders.get(expert.source_model) |
|
copy_tensor_out( |
|
weight_info, |
|
expert_loader, |
|
writer, |
|
expert=expert, |
|
out_dtype=out_dtype, |
|
output_name=expert_name, |
|
clone=merge_options.clone_tensors, |
|
is_residual="down_proj" in tensor_name, |
|
) |
|
else: |
|
|
|
|
|
|
|
if ( |
|
weight_info.name == "lm_head.weight" |
|
and base_cfg.tie_word_embeddings |
|
): |
|
|
|
pass |
|
|
|
else: |
|
tensor = base_loader.get_tensor(weight_info.name) |
|
writer.save_tensor( |
|
weight_info.name, |
|
tensor.to(dtype=out_dtype), |
|
clone=merge_options.clone_tensors, |
|
) |
|
|
|
|
|
for layer_idx, weight in enumerate( |
|
tqdm.tqdm(router_weights, desc="Router weights") |
|
): |
|
writer.save_tensor( |
|
self._router_weight_name(layer_idx), |
|
weight.to(dtype=out_dtype).contiguous(), |
|
clone=merge_options.clone_tensors, |
|
) |
|
|
|
writer.finalize() |