Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -34,7 +34,7 @@ You can use the raw model for object detection. See the [model hub](https://hugg | |
| 34 | 
             
            Here is how to use this model:
         | 
| 35 |  | 
| 36 | 
             
            ```python
         | 
| 37 | 
            -
            from transformers import  | 
| 38 | 
             
            import torch
         | 
| 39 | 
             
            from PIL import Image
         | 
| 40 | 
             
            import requests
         | 
| @@ -42,24 +42,23 @@ import requests | |
| 42 | 
             
            url = "http://images.cocodataset.org/val2017/000000039769.jpg"
         | 
| 43 | 
             
            image = Image.open(requests.get(url, stream=True).raw)
         | 
| 44 |  | 
| 45 | 
            -
             | 
| 46 | 
             
            model = ConditionalDetrForObjectDetection.from_pretrained("microsoft/conditional-detr-resnet-50")
         | 
| 47 |  | 
| 48 | 
            -
            inputs =  | 
| 49 | 
             
            outputs = model(**inputs)
         | 
| 50 |  | 
| 51 | 
             
            # convert outputs (bounding boxes and class logits) to COCO API
         | 
|  | |
| 52 | 
             
            target_sizes = torch.tensor([image.size[::-1]])
         | 
| 53 | 
            -
            results =  | 
| 54 |  | 
| 55 | 
             
            for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
         | 
| 56 | 
             
                box = [round(i, 2) for i in box.tolist()]
         | 
| 57 | 
            -
                 | 
| 58 | 
            -
                if score > 0.7:
         | 
| 59 | 
            -
                    print(
         | 
| 60 | 
             
                        f"Detected {model.config.id2label[label.item()]} with confidence "
         | 
| 61 | 
             
                        f"{round(score.item(), 3)} at location {box}"
         | 
| 62 | 
            -
             | 
| 63 | 
             
            ```
         | 
| 64 | 
             
            This should output:
         | 
| 65 | 
             
            ```
         | 
|  | |
| 34 | 
             
            Here is how to use this model:
         | 
| 35 |  | 
| 36 | 
             
            ```python
         | 
| 37 | 
            +
            from transformers import AutoImageProcessor, ConditionalDetrForObjectDetection
         | 
| 38 | 
             
            import torch
         | 
| 39 | 
             
            from PIL import Image
         | 
| 40 | 
             
            import requests
         | 
|  | |
| 42 | 
             
            url = "http://images.cocodataset.org/val2017/000000039769.jpg"
         | 
| 43 | 
             
            image = Image.open(requests.get(url, stream=True).raw)
         | 
| 44 |  | 
| 45 | 
            +
            processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50")
         | 
| 46 | 
             
            model = ConditionalDetrForObjectDetection.from_pretrained("microsoft/conditional-detr-resnet-50")
         | 
| 47 |  | 
| 48 | 
            +
            inputs = processor(images=image, return_tensors="pt")
         | 
| 49 | 
             
            outputs = model(**inputs)
         | 
| 50 |  | 
| 51 | 
             
            # convert outputs (bounding boxes and class logits) to COCO API
         | 
| 52 | 
            +
            # let's only keep detections with score > 0.7
         | 
| 53 | 
             
            target_sizes = torch.tensor([image.size[::-1]])
         | 
| 54 | 
            +
            results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
         | 
| 55 |  | 
| 56 | 
             
            for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
         | 
| 57 | 
             
                box = [round(i, 2) for i in box.tolist()]
         | 
| 58 | 
            +
                print(
         | 
|  | |
|  | |
| 59 | 
             
                        f"Detected {model.config.id2label[label.item()]} with confidence "
         | 
| 60 | 
             
                        f"{round(score.item(), 3)} at location {box}"
         | 
| 61 | 
            +
                )
         | 
| 62 | 
             
            ```
         | 
| 63 | 
             
            This should output:
         | 
| 64 | 
             
            ```
         | 

