kevinleogao commited on
Commit
75d52fb
·
1 Parent(s): 9b5b0af

update lfs wrap final

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ datasets: Microsoft/ChatBench
4
+ language: en
5
+ base_model: meta-llama/Meta-Llama-3-8B
6
+ library_name: peft
7
+ tags:
8
+ - Microsoft
9
+ - ChatBench
10
+ - Interactive Benchmark
11
+ - User Simulator
12
+ - Benchmarking
13
+ ---
14
+
15
+ # chatbench-llama3-8b
16
+
17
+ ## Overview
18
+
19
+ ChatBench Simulators are fine-tuned user simulators designed to enable automated, realistic evaluation of large language models (LLMs) through simulated user–AI conversations.
20
+
21
+ Instead of recruiting human participants for every evaluation, you can use this simulator (`chatbench-llama3-8b`) to act as a proxy user. By providing a multiple-choice question (full stem plus answer options) via a CLI or Python API, the simulator generates natural user turns—asking clarifications, signaling understanding, or indicating errors—until the simulated user “accepts” an answer.
22
+
23
+ These conversations can be used to compute task success rate, coherence, user satisfaction, error recovery, and latency metrics, enabling researchers and practitioners to move beyond static benchmarks and evaluate models under interactive, user-in-the-loop conditions.
24
+
25
+ <p align="center">
26
+ <a href="https://github.com/microsoft/ChatBench">GitHub</a>&nbsp&nbsp | &nbsp&nbsp <a href="https://arxiv.org/pdf/2504.07114">Paper</a>
27
+ </p>
28
+
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+
34
+ - **Model type**: Causal LM (user simulator, LoRA adapter on Llama-3-8B)
35
+ - **Base model**: meta-llama/Meta-Llama-3-8B
36
+ - **Fine-tuned on**: microsoft/ChatBench (≈12K multi-turn QA dialogs)
37
+ - **Languages**: English
38
+ - **License**: Inherits from Meta-Llama-3 (llama3)
39
+ - **Developed by**: Microsoft
40
41
+
42
+ ### Training Setup:
43
+
44
+ The model was fine-tuned end-to-end on ChatBench data using the same simulator recipe described in Section 5 of the paper. Each example is formatted as:
45
+
46
+ ```text
47
+ [SYSTEM] <instruction>
48
+
49
+ <previous turns>
50
+
51
+ [USER]
52
+ → model generates: <assistant reply> [END]
53
+ ```
54
+
55
+ - **Optimizer:** AdamW
56
+ - **Adapter**: LoRA (r=8, α=32, dropout=0.05)
57
+ - **Quantization**: 8-bit weights with CPU offload
58
+ - **Precision:** bf16 (trained on 4× RTX A6000 GPUs)
59
+ - **Quantization:** 8-bit CPU offload for inference
60
+ - **Batch size:** 1 per GPU
61
+ - **Epochs:** 2
62
+ - **LR:** 5e−5
63
+
64
+ ## Intended Uses
65
+
66
+ #### Direct Use
67
+
68
+ - Automated user simulation for interactive benchmarking of LLMs.
69
+
70
+ - Research reproduction of the ACL’25 paper results.
71
+
72
+ - Prototyping multi-turn evaluation pipelines with a mid-size simulator model.
73
+
74
+ #### Out-of-Scope
75
+
76
+ - Deployment in sensitive domains (healthcare, legal, financial) without expert oversight.
77
+
78
+ - Open-ended creative generation (storytelling, brainstorming).
79
+
80
+ - Very long-context tasks beyond the Llama-3-8B context window.
81
+
82
+ ## Bias, Risks, and Limitations
83
+
84
+ - **Bias**: Inherits biases from Llama-3-8B pretraining and ChatBench data.
85
+
86
+ - **Factual reliability**: May hallucinate or produce unrealistic user behaviors outside the training domain.
87
+
88
+ - **Coverage**: Optimized for structured, multiple-choice QA; not suitable for unconstrained dialogue.
89
+
90
+ - **Adapter trade-offs**: LoRA adapters may underfit compared to full fine-tunes.
91
+
92
+ ## How to Get Started
93
+
94
+ ```python
95
+ from transformers import AutoModelForCausalLM, AutoTokenizer
96
+ from peft import PeftModel
97
+
98
+ # Load base Llama-3-8B in 8-bit
99
+ base = AutoModelForCausalLM.from_pretrained(
100
+ "meta-llama/Meta-Llama-3-8B",
101
+ load_in_8bit=True,
102
+ device_map="auto"
103
+ )
104
+
105
+ # Load ChatBench LoRA adapter
106
+ model = PeftModel.from_pretrained(base, "microsoft/chatbench-llama3-8b")
107
+
108
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
109
+ tokenizer.pad_token = tokenizer.eos_token
110
+
111
+ inputs = tokenizer(
112
+ "[SYSTEM] You are a user.\n\n[USER] What is 2+2?\n\n[USER] ",
113
+ return_tensors="pt"
114
+ ).to("cuda")
115
+
116
+ outputs = model.generate(**inputs, max_new_tokens=64)
117
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
118
+ ```
119
+
120
+ ## Evaluation
121
+
122
+ ### Perplexity
123
+
124
+ We report perplexity (PPL) on held-out ChatBench data, comparing baseline `Llama3-8B` vs. fine-tuned `chatbench-llama3-8b`.
125
+
126
+ _A lower PPL means the fine-tuned model is closer (more confident) in the human-like reply it was trained on._
127
+
128
+ | **Model** | **Perplexity**
129
+ | :----------------------- | :------------ |
130
+ | Llama-3-8B (baseline) | 4.14
131
+ | **chatbench-llama3-8b** | **1.89** |
132
+
133
+ ### Interactive Evaluation (ACL’25 Study)
134
+
135
+ - **Correlation with Human User–AI Accuracy**: +20 point improvement over unfine-tuned baselines.
136
+
137
+ - **Task Success Accuracy**: Within ±5 points of real user–AI results across five MMLU subsets.
138
+
139
+ - **Ablations**: Removing persona-conditioning or chain-of-thought prompts reduced coherence scores by ~10 points.
140
+
141
+ Full details are available in Section 6 of the [paper](https://arxiv.org/pdf/2504.07114).
142
+
143
+ ## Technical Specifications
144
+
145
+ ### Compute Infrastructure
146
+
147
+ - **Hardware**: 4× NVIDIA RTX A6000 GPUs (48GB VRAM each), 128-core x86_64 CPU
148
+ - **Software**: Ubuntu 22.04, CUDA 12.4, PyTorch + Hugging Face Transformers + PEFT
149
+
150
+ ## Citation
151
+
152
+ https://arxiv.org/abs/2504.07114
153
+
154
+
155
+ #### Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computers and Society (cs.CY); Human-Computer Interaction (cs.HC)
156
+ #### Cite as:
157
+ - arXiv:2504.07114 [cs.CL] (or arXiv:2504.07114v1 [cs.CL] for this version)
158
+ - https://doi.org/10.48550/arXiv.2504.07114
159
+
160
+
161
+ **BibTeX:**
162
+
163
+ @misc{chang2025chatbenchstaticbenchmarkshumanai,
164
+ title={ChatBench: From Static Benchmarks to Human-AI Evaluation},
165
+ author={Serina Chang and Ashton Anderson and Jake M. Hofman},
166
+ year={2025},
167
+ eprint={2504.07114},
168
+ archivePrefix={arXiv},
169
+ primaryClass={cs.CL},
170
+ url={https://arxiv.org/abs/2504.07114},
171
+ }
172
+
173
+ **APA:**
174
+
175
+ Chang, S., Anderson, A., & Hofman, J. M. (2025). ChatBench: From Static Benchmarks to Human-AI Evaluation. arXiv [Cs.CL]. Retrieved from http://arxiv.org/abs/2504.07114
176
+
adapter_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4acd174a040295660c847387f0ae0306cec74819214fc861f85c8bb4b6f0bc4a
3
+ size 809
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3efc00e2a6700595f8a3efc3cec66c36bf8e1bf8c61d48dd8c41a9295f33d899
3
+ size 27297032
checkpoint-6000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Meta-Llama-3-8B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2.dev0
checkpoint-6000/adapter_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4acd174a040295660c847387f0ae0306cec74819214fc861f85c8bb4b6f0bc4a
3
+ size 809
checkpoint-6000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3b8748afc1ee71cc52ceb7e012b87848ef2218dd8db6c30d8cbf5d2abbbd345
3
+ size 27297032
checkpoint-6000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86645e69aee895ac1171ff931c7b8c42a077bcfe8c555de2339555eec2fe0b16
3
+ size 54741195
checkpoint-6000/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5ee36df37b2c3297c7a832b132ada0d8c161246495b51d3da30774fbf5e4712
3
+ size 15429
checkpoint-6000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eccc96e52712f7fea6586821785073d1c6838a565c23940b46bb66feb80c875d
3
+ size 15429
checkpoint-6000/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffc1eaeaaf1126a21ac631be8b5fb91f2177fe191ae094eeca1d00f747b4f6ab
3
+ size 15429
checkpoint-6000/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5ce83fb1ffa485c6e80e9e9e076fc2e5ae086751cc05dd543593360034c0314
3
+ size 15429
checkpoint-6000/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32456ef18977047b1c0e7ad749c26531aae6ddd2edb0ddec474f4e4f87424435
3
+ size 1383
checkpoint-6000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85378c21ff41421b723334d45e98796ef31b061f74fd1e13b11c588feec80c7a
3
+ size 1465
checkpoint-6000/special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:849070cae53bd45439e64ce5b1ddd650a66081b1bd47895c5a58939a05055579
3
+ size 335
checkpoint-6000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5369c3741b845e69168447c5d323a098c50d73fc0ea470372531259d414d1b78
3
+ size 17210060
checkpoint-6000/tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd8f0d080f2c8a6f8790a73f032aef803c0376cfb94e1c10d59744498426287
3
+ size 50626
checkpoint-6000/trainer_state.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5ebad437608769567b2b1026cd68729846cc2d4e4870157e3016f963f731830
3
+ size 11229
checkpoint-6000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:446a6cc081a25023f870b97eb322614f114e4ab76accabb121882036c1e6c371
3
+ size 5777
checkpoint-6244/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Meta-Llama-3-8B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2.dev0
checkpoint-6244/adapter_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4acd174a040295660c847387f0ae0306cec74819214fc861f85c8bb4b6f0bc4a
3
+ size 809
checkpoint-6244/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3efc00e2a6700595f8a3efc3cec66c36bf8e1bf8c61d48dd8c41a9295f33d899
3
+ size 27297032
checkpoint-6244/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee7688d6dcc5aec4463762f6853b319307bf51261491ec9123e4b1446394238a
3
+ size 54741195
checkpoint-6244/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccc249fdd178a1d2bd5fcf47717621f0e9ac64a3b3238dbc4a37f07c257dc779
3
+ size 15429
checkpoint-6244/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01c8796a0092ea0775204b3b6af23b5eca9ed0992b1d078aca100664d52f92fa
3
+ size 15429
checkpoint-6244/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:444c7e87cb879badc48d671f5a4966b90da194a87818a3e4fc3ba592e9969f3f
3
+ size 15429
checkpoint-6244/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa544be62d8c59e70eda80cb606bd0de56769ff6160695058308747e431eb142
3
+ size 15429
checkpoint-6244/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3170210bfaff4913d0387bd1fa9d1a253b3fb86763f03d0b20d8f632ee1c126
3
+ size 1383
checkpoint-6244/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8c9f8c53ec1129ad7b709bc309314303d7fbaba274a40f02ef6eba4d19edfb8
3
+ size 1465
checkpoint-6244/special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:849070cae53bd45439e64ce5b1ddd650a66081b1bd47895c5a58939a05055579
3
+ size 335
checkpoint-6244/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5369c3741b845e69168447c5d323a098c50d73fc0ea470372531259d414d1b78
3
+ size 17210060
checkpoint-6244/tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd8f0d080f2c8a6f8790a73f032aef803c0376cfb94e1c10d59744498426287
3
+ size 50626
checkpoint-6244/trainer_state.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ac6f0c2406966b3786d9d5cc7099bf7038c0f20271f092a271841fabaaf9268
3
+ size 11562
checkpoint-6244/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:446a6cc081a25023f870b97eb322614f114e4ab76accabb121882036c1e6c371
3
+ size 5777
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:529c4ee9047b1764d88c085b5e902fe54fa7713a9c820f772257a2489cba4519
3
+ size 1169
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:849070cae53bd45439e64ce5b1ddd650a66081b1bd47895c5a58939a05055579
3
+ size 335
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5369c3741b845e69168447c5d323a098c50d73fc0ea470372531259d414d1b78
3
+ size 17210060
tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd8f0d080f2c8a6f8790a73f032aef803c0376cfb94e1c10d59744498426287
3
+ size 50626
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:446a6cc081a25023f870b97eb322614f114e4ab76accabb121882036c1e6c371
3
+ size 5777