Upload 12 files
Browse files- added_tokens.json +12 -0
- config.json +37 -0
- configuration_phi4flash.py +173 -0
- generation_config.json +10 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +442 -0
- modeling_phi4flash.py +2098 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +111 -0
- vocab.json +0 -0
added_tokens.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|/tool_call|>": 200026,
|
3 |
+
"<|/tool|>": 200024,
|
4 |
+
"<|assistant|>": 200019,
|
5 |
+
"<|end|>": 200020,
|
6 |
+
"<|system|>": 200022,
|
7 |
+
"<|tag|>": 200028,
|
8 |
+
"<|tool_call|>": 200025,
|
9 |
+
"<|tool_response|>": 200027,
|
10 |
+
"<|tool|>": 200023,
|
11 |
+
"<|user|>": 200021
|
12 |
+
}
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Phi4FlashForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_phi4flash.Phi4FlashConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_phi4flash.Phi4FlashForCausalLM",
|
9 |
+
"AutoTokenizer": "Xenova/gpt-4o"
|
10 |
+
},
|
11 |
+
"pad_token_id": 199999,
|
12 |
+
"bos_token_id": 199999,
|
13 |
+
"embd_pdrop": 0.0,
|
14 |
+
"eos_token_id": 199999,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 2560,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 10240,
|
19 |
+
"layer_norm_eps": 1e-5,
|
20 |
+
"max_position_embeddings": 262144,
|
21 |
+
"_attn_implementation": "flash_attention_2",
|
22 |
+
"mb_per_layer": 2,
|
23 |
+
"model_type": "phi4flash",
|
24 |
+
"num_attention_heads": 40,
|
25 |
+
"num_hidden_layers": 32,
|
26 |
+
"num_key_value_heads": 20,
|
27 |
+
"resid_pdrop": 0.0,
|
28 |
+
"sliding_window": 512,
|
29 |
+
"torch_dtype": "bfloat16",
|
30 |
+
"tie_word_embeddings": true,
|
31 |
+
"transformers_version": "4.46.1",
|
32 |
+
"use_cache": true,
|
33 |
+
"mlp_bias": false,
|
34 |
+
"lm_head_bias": false,
|
35 |
+
"vocab_size": 200064
|
36 |
+
}
|
37 |
+
|
configuration_phi4flash.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi4Flash model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
import math
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class Phi4FlashConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`Phi4FlashModel`]. It is used to instantiate an Phi4Flash
|
28 |
+
model according to the specified arguments, defining the model architecture.
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
vocab_size (`int`, *optional*, defaults to 51200):
|
35 |
+
Vocabulary size of the Phi4Flash model. Defines the number of different tokens that can be represented by the
|
36 |
+
`inputs_ids` passed when calling [`Phi4FlashModel`].
|
37 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
38 |
+
Dimension of the hidden representations.
|
39 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
40 |
+
Dimension of the MLP representations.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
42 |
+
Number of hidden layers in the Transformer decoder.
|
43 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
44 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
45 |
+
num_key_value_heads (`int`, *optional*):
|
46 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
47 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
48 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
49 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
50 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
51 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
52 |
+
`num_attention_heads`.
|
53 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
54 |
+
Dropout probability for mlp outputs.
|
55 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
56 |
+
The dropout ratio for the embeddings.
|
57 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
58 |
+
The dropout ratio after computing the attention scores.
|
59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
60 |
+
The non-linear activation function (function or string) in the decoder.
|
61 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
62 |
+
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
|
63 |
+
tokens.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
67 |
+
The epsilon used by the rms normalization layers.
|
68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
70 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
71 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
72 |
+
Whether to tie weight embeddings
|
73 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
74 |
+
The base period of the RoPE embeddings.
|
75 |
+
|
76 |
+
Example:
|
77 |
+
|
78 |
+
```python
|
79 |
+
>>> from transformers import Phi4FlashModel, Phi4FlashConfig
|
80 |
+
|
81 |
+
>>> # Initializing a Phi4Flash style configuration
|
82 |
+
>>> configuration = Phi4FlashConfig.from_pretrained("microsoft/Phi4-mini-flash-reasoning")
|
83 |
+
|
84 |
+
>>> # Initializing a model from the configuration
|
85 |
+
>>> model = Phi4FlashModel(configuration)
|
86 |
+
|
87 |
+
>>> # Accessing the model configuration
|
88 |
+
>>> configuration = model.config
|
89 |
+
```"""
|
90 |
+
|
91 |
+
model_type = "phi4flash"
|
92 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
vocab_size=51200,
|
97 |
+
hidden_size=2560,
|
98 |
+
intermediate_size=9216,
|
99 |
+
num_hidden_layers=32,
|
100 |
+
num_attention_heads=40,
|
101 |
+
num_key_value_heads=4,
|
102 |
+
resid_pdrop=0.0,
|
103 |
+
embd_pdrop=0.0,
|
104 |
+
attention_dropout=0.0,
|
105 |
+
hidden_act="silu",
|
106 |
+
max_position_embeddings=4096,
|
107 |
+
initializer_range=0.02,
|
108 |
+
layer_norm_eps=1e-5,
|
109 |
+
use_cache=True,
|
110 |
+
tie_word_embeddings=True,
|
111 |
+
rope_theta=10000.0,
|
112 |
+
bos_token_id=1,
|
113 |
+
eos_token_id=2,
|
114 |
+
sliding_window=2047,
|
115 |
+
mb_per_layer= 2,
|
116 |
+
mamba_d_state=16,
|
117 |
+
mamba_d_conv=4,
|
118 |
+
mamba_expand=2,
|
119 |
+
mamba_dt_rank="auto",
|
120 |
+
mamba_conv_bias=True,
|
121 |
+
mamba_proj_bias=False,
|
122 |
+
**kwargs,
|
123 |
+
):
|
124 |
+
self.vocab_size = vocab_size
|
125 |
+
self.hidden_size = hidden_size
|
126 |
+
self.intermediate_size = intermediate_size
|
127 |
+
self.num_hidden_layers = num_hidden_layers
|
128 |
+
self.num_attention_heads = num_attention_heads
|
129 |
+
|
130 |
+
if num_key_value_heads is None:
|
131 |
+
num_key_value_heads = num_attention_heads
|
132 |
+
|
133 |
+
self.num_key_value_heads = num_key_value_heads
|
134 |
+
self.resid_pdrop = resid_pdrop
|
135 |
+
self.embd_pdrop = embd_pdrop
|
136 |
+
self.attention_dropout = attention_dropout
|
137 |
+
self.hidden_act = hidden_act
|
138 |
+
self.max_position_embeddings = max_position_embeddings
|
139 |
+
self.initializer_range = initializer_range
|
140 |
+
self.layer_norm_eps = layer_norm_eps
|
141 |
+
self.use_cache = use_cache
|
142 |
+
self.rope_theta = rope_theta
|
143 |
+
self.mb_per_layer = mb_per_layer
|
144 |
+
self.sliding_window = [
|
145 |
+
sliding_window if layer_idx < num_hidden_layers // 2 and layer_idx % 2 == 1 else None
|
146 |
+
for layer_idx in range(num_hidden_layers)
|
147 |
+
]
|
148 |
+
|
149 |
+
self.mamba_d_state = mamba_d_state
|
150 |
+
self.mamba_d_conv = mamba_d_conv
|
151 |
+
self.mamba_expand = mamba_expand
|
152 |
+
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
|
153 |
+
self.mamba_conv_bias = mamba_conv_bias
|
154 |
+
self.mamba_proj_bias = mamba_proj_bias
|
155 |
+
|
156 |
+
super().__init__(
|
157 |
+
bos_token_id=bos_token_id,
|
158 |
+
eos_token_id=eos_token_id,
|
159 |
+
tie_word_embeddings=tie_word_embeddings,
|
160 |
+
**kwargs,
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
@property
|
165 |
+
def layers_block_type(self):
|
166 |
+
layer_block_types = []
|
167 |
+
for i in range(self.num_hidden_layers):
|
168 |
+
if i % 2 == 1:
|
169 |
+
layer_block_type = "attention" if i <= (self.num_hidden_layers //2 +1) else "shared_attention"
|
170 |
+
else:
|
171 |
+
layer_block_type = "mamba"
|
172 |
+
layer_block_types.append(layer_block_type)
|
173 |
+
return layer_block_types
|
generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 199999,
|
4 |
+
"eos_token_id": [
|
5 |
+
200020,
|
6 |
+
199999
|
7 |
+
],
|
8 |
+
"pad_token_id": 199999,
|
9 |
+
"transformers_version": "4.45.0"
|
10 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4683d17ca19ab12e0278b6a1db98db76301cbbc3119d9599739df14f45554d03
|
3 |
+
size 4952270280
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40beaf0c37ad2788ccb63d698afe9725e84479d68bf7a1e9c0ce921af0e3916e
|
3 |
+
size 3777232440
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 8729453568
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.final_layernorm.bias": "model-00002-of-00002.safetensors",
|
9 |
+
"model.final_layernorm.weight": "model-00002-of-00002.safetensors",
|
10 |
+
"model.layers.0.attn.A_log": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.attn.D": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.0.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.1.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.1.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.1.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.attn.A_log": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.attn.D": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.10.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.10.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.10.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.10.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.10.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.10.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.11.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.11.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.11.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.11.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.11.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.11.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.11.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.11.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.11.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.12.attn.A_log": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.12.attn.D": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.12.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.12.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.12.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.12.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.12.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.12.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.12.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.12.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.13.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.13.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.13.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.13.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.13.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.13.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.13.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.13.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.13.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.13.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.14.attn.A_log": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.14.attn.D": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.14.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.14.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.14.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.14.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.14.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.14.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.14.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.14.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.15.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.15.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.15.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.15.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.15.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.15.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.15.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.15.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.15.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.15.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.16.attn.A_log": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.16.attn.D": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.16.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.16.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.16.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.16.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.16.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.16.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.16.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.16.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.17.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.17.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.17.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.17.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.17.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.17.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.17.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.17.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.17.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.17.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.18.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
161 |
+
"model.layers.18.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"model.layers.18.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
163 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"model.layers.18.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
165 |
+
"model.layers.18.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"model.layers.18.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
167 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
168 |
+
"model.layers.19.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
169 |
+
"model.layers.19.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"model.layers.19.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
171 |
+
"model.layers.19.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
172 |
+
"model.layers.19.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
173 |
+
"model.layers.19.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
174 |
+
"model.layers.19.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"model.layers.19.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.19.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.19.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.19.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.19.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.19.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.2.attn.A_log": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.2.attn.D": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.2.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.2.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.2.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.2.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.2.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.2.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.2.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.2.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.20.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"model.layers.20.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.20.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
201 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"model.layers.20.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"model.layers.20.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"model.layers.20.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
205 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"model.layers.21.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
207 |
+
"model.layers.21.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"model.layers.21.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
209 |
+
"model.layers.21.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
210 |
+
"model.layers.21.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
211 |
+
"model.layers.21.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
212 |
+
"model.layers.21.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"model.layers.21.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
214 |
+
"model.layers.21.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"model.layers.21.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
216 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
217 |
+
"model.layers.21.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"model.layers.21.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"model.layers.21.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
220 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"model.layers.22.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
222 |
+
"model.layers.22.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"model.layers.22.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
224 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.22.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.22.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.22.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.23.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
230 |
+
"model.layers.23.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"model.layers.23.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
232 |
+
"model.layers.23.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
233 |
+
"model.layers.23.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.23.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.23.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.23.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.23.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.23.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.23.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.23.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.23.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
243 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
244 |
+
"model.layers.24.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
245 |
+
"model.layers.24.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
246 |
+
"model.layers.24.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
247 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"model.layers.24.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"model.layers.24.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"model.layers.24.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
251 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"model.layers.25.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
253 |
+
"model.layers.25.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"model.layers.25.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
255 |
+
"model.layers.25.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
256 |
+
"model.layers.25.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
257 |
+
"model.layers.25.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
258 |
+
"model.layers.25.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
259 |
+
"model.layers.25.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.25.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.25.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.25.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.25.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.25.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
266 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
267 |
+
"model.layers.26.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
268 |
+
"model.layers.26.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
269 |
+
"model.layers.26.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
270 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
271 |
+
"model.layers.26.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.26.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.26.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.27.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.27.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.27.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.27.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.27.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.27.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.27.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.27.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.27.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.27.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
285 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
286 |
+
"model.layers.27.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
287 |
+
"model.layers.27.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"model.layers.27.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
289 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
290 |
+
"model.layers.28.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
291 |
+
"model.layers.28.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
292 |
+
"model.layers.28.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
293 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
294 |
+
"model.layers.28.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
295 |
+
"model.layers.28.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.28.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.29.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.29.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.29.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.29.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.29.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.29.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.29.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.29.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.29.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.29.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.29.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.29.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.29.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.3.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
314 |
+
"model.layers.3.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"model.layers.3.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
316 |
+
"model.layers.3.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
317 |
+
"model.layers.3.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
318 |
+
"model.layers.3.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
319 |
+
"model.layers.3.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"model.layers.3.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
321 |
+
"model.layers.3.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
322 |
+
"model.layers.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
323 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
324 |
+
"model.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
325 |
+
"model.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"model.layers.3.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
327 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
328 |
+
"model.layers.30.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.30.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.30.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.30.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.31.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.31.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.31.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.31.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.31.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.31.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.31.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.31.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.31.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.31.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.4.attn.A_log": "model-00001-of-00002.safetensors",
|
352 |
+
"model.layers.4.attn.D": "model-00001-of-00002.safetensors",
|
353 |
+
"model.layers.4.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
354 |
+
"model.layers.4.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
355 |
+
"model.layers.4.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
356 |
+
"model.layers.4.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
357 |
+
"model.layers.4.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
358 |
+
"model.layers.4.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
359 |
+
"model.layers.4.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
360 |
+
"model.layers.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
361 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
362 |
+
"model.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
363 |
+
"model.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
364 |
+
"model.layers.4.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
365 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
366 |
+
"model.layers.5.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
367 |
+
"model.layers.5.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"model.layers.5.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.5.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.5.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.5.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.5.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.5.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.5.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.5.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.6.attn.A_log": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.6.attn.D": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.6.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.6.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.6.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.6.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.6.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.6.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.6.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.7.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.7.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.7.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.7.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.7.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.7.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.7.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.7.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.8.attn.A_log": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.8.attn.D": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.8.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.8.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.8.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.9.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.9.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
440 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
modeling_phi4flash.py
ADDED
@@ -0,0 +1,2098 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" PyTorch Phi4Flash model."""
|
17 |
+
|
18 |
+
|
19 |
+
import inspect
|
20 |
+
import math
|
21 |
+
import warnings
|
22 |
+
from typing import List, Optional, Tuple, Union, Dict, Any
|
23 |
+
import copy
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.cache_utils import Cache, DynamicCache
|
31 |
+
from transformers.utils import is_torchdynamo_compiling
|
32 |
+
from transformers.modeling_outputs import (
|
33 |
+
BaseModelOutputWithPast,
|
34 |
+
CausalLMOutputWithPast,
|
35 |
+
SequenceClassifierOutputWithPast,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.generation import GenerationMixin
|
40 |
+
from transformers.utils import (
|
41 |
+
add_code_sample_docstrings,
|
42 |
+
add_start_docstrings,
|
43 |
+
add_start_docstrings_to_model_forward,
|
44 |
+
is_flash_attn_greater_or_equal_2_10,
|
45 |
+
logging,
|
46 |
+
replace_return_docstrings,
|
47 |
+
)
|
48 |
+
from einops import rearrange, repeat
|
49 |
+
|
50 |
+
from .configuration_phi4flash import Phi4FlashConfig
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
55 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
56 |
+
|
57 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
58 |
+
|
59 |
+
if not _flash_supports_window_size:
|
60 |
+
raise ValueError("Please update flash-attention to support window size.")
|
61 |
+
|
62 |
+
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
63 |
+
import causal_conv1d_cuda
|
64 |
+
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
65 |
+
|
66 |
+
from torch.amp import custom_bwd, custom_fwd
|
67 |
+
import selective_scan_cuda
|
68 |
+
|
69 |
+
_CHECKPOINT_FOR_DOC = "microsoft/Phi-4-mini-flash-reasoning"
|
70 |
+
_CONFIG_FOR_DOC = "Phi4FlashConfig"
|
71 |
+
|
72 |
+
# monkey patch to add support for our cache
|
73 |
+
def _prepare_cache_for_generation(
|
74 |
+
self,
|
75 |
+
generation_config,
|
76 |
+
model_kwargs: Dict,
|
77 |
+
assistant_model: "PreTrainedModel",
|
78 |
+
batch_size: int,
|
79 |
+
max_cache_length: int,
|
80 |
+
device: torch.device,
|
81 |
+
) -> bool:
|
82 |
+
"""
|
83 |
+
Prepares the cache for generation (if applicable), given `generate`'s parameterization. If a cache is
|
84 |
+
instantiated, writes it to `model_kwargs`, under the name expected by the model.
|
85 |
+
"""
|
86 |
+
|
87 |
+
cache_name = "past_key_values"
|
88 |
+
|
89 |
+
# Quick escape route 2: if the user specifies no cache is to be used. (conflicting arguments are handled in
|
90 |
+
# `generation_config.validate()`)
|
91 |
+
if generation_config.use_cache is False:
|
92 |
+
return
|
93 |
+
|
94 |
+
# Otherwise we NEED to prepare a cache, based on `generation_config.cache_implementation`
|
95 |
+
|
96 |
+
# TODO(joao): support static caches in assisted generation. assisted generation needs to roll back caches,
|
97 |
+
# which is only supported in dynamic caches atm
|
98 |
+
if assistant_model is not None:
|
99 |
+
logger.warning_once(
|
100 |
+
"An assistant model is provided, using a dynamic cache instead of a cache of type="
|
101 |
+
f"'{generation_config.cache_implementation}'."
|
102 |
+
)
|
103 |
+
model_kwargs[cache_name] = DynamicCache()
|
104 |
+
return
|
105 |
+
|
106 |
+
model_kwargs[cache_name] = self._get_cache(
|
107 |
+
cache_implementation="sambay",
|
108 |
+
batch_size=max(generation_config.num_beams, generation_config.num_return_sequences) * batch_size,
|
109 |
+
max_cache_len=max_cache_length,
|
110 |
+
device=device,
|
111 |
+
model_kwargs=model_kwargs,
|
112 |
+
)
|
113 |
+
|
114 |
+
def _get_cache(
|
115 |
+
self, cache_implementation: str, batch_size: int, max_cache_len: int, device: torch.device, model_kwargs
|
116 |
+
) -> Cache:
|
117 |
+
"""
|
118 |
+
Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a
|
119 |
+
new `generate` call requires a larger cache or uses a different batch size.
|
120 |
+
|
121 |
+
Returns the resulting cache object.
|
122 |
+
"""
|
123 |
+
cache_cls: Cache = SambaYCache
|
124 |
+
requires_cross_attention_cache = (
|
125 |
+
self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None
|
126 |
+
)
|
127 |
+
|
128 |
+
if hasattr(self, "_cache"):
|
129 |
+
cache_to_check = self._cache.self_attention_cache if requires_cross_attention_cache else self._cache
|
130 |
+
|
131 |
+
if cache_implementation == "sliding_window":
|
132 |
+
max_cache_len = min(self.config.sliding_window[1], max_cache_len)
|
133 |
+
|
134 |
+
need_new_cache = (
|
135 |
+
not hasattr(self, "_cache")
|
136 |
+
or (not isinstance(cache_to_check, cache_cls))
|
137 |
+
or cache_to_check.batch_size != batch_size
|
138 |
+
)
|
139 |
+
if cache_implementation != "mamba":
|
140 |
+
need_new_cache = need_new_cache or cache_to_check.max_cache_len < max_cache_len
|
141 |
+
|
142 |
+
if requires_cross_attention_cache and hasattr(self, "_cache"):
|
143 |
+
need_new_cache = (
|
144 |
+
need_new_cache
|
145 |
+
or self._cache.cross_attention_cache.max_cache_len != model_kwargs["encoder_outputs"][0].shape[1]
|
146 |
+
)
|
147 |
+
|
148 |
+
if need_new_cache:
|
149 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
150 |
+
cache_dtype = self.config._pre_quantization_dtype
|
151 |
+
else:
|
152 |
+
if not is_torchdynamo_compiling():
|
153 |
+
cache_dtype = self.dtype
|
154 |
+
else:
|
155 |
+
# NOTE: self.dtype is not compatible with torch.compile, as it calls `self.parameters()`.
|
156 |
+
# Workaround: trust the lm_head, whose attribute name is somewhat consistent across generative
|
157 |
+
# models. May cause trobles with non-text modalities.
|
158 |
+
cache_dtype = self.get_output_embeddings().weight.dtype
|
159 |
+
|
160 |
+
def get_layer_device_map(execution_device_map: Optional[dict] = None):
|
161 |
+
if execution_device_map is None:
|
162 |
+
return None
|
163 |
+
elif len(execution_device_map) == 1 and "" in execution_device_map:
|
164 |
+
return {idx: execution_device_map[""] for idx in range(self.config.num_hidden_layers)}
|
165 |
+
layer_device_map = {}
|
166 |
+
for layer in execution_device_map:
|
167 |
+
for idx in range(self.config.num_hidden_layers):
|
168 |
+
if f".{idx}." in f"{layer}.":
|
169 |
+
layer_device_map[idx] = execution_device_map[layer]
|
170 |
+
break
|
171 |
+
for idx in range(self.config.num_hidden_layers):
|
172 |
+
if idx not in layer_device_map:
|
173 |
+
raise RuntimeError(f"layer {idx} has not been mapped to a device.")
|
174 |
+
return layer_device_map
|
175 |
+
|
176 |
+
execution_device_map = None
|
177 |
+
# Taken from dispatch_model from accelerate.
|
178 |
+
# This is needed here if we don't want to make changes in accelerate in order to save execution_device
|
179 |
+
# For offloaded case, we need to get the execution device, not just the device where it is offloaded
|
180 |
+
if hasattr(self, "hf_device_map"):
|
181 |
+
main_device = [d for d in self.hf_device_map.values() if d not in ["cpu", "disk"]][0]
|
182 |
+
execution_device_map = {
|
183 |
+
name: main_device if device in ["cpu", "disk"] else device
|
184 |
+
for name, device in self.hf_device_map.items()
|
185 |
+
}
|
186 |
+
layer_device_map = get_layer_device_map(execution_device_map)
|
187 |
+
|
188 |
+
cache_kwargs = {
|
189 |
+
"config": self.config.get_text_config(),
|
190 |
+
"batch_size": batch_size,
|
191 |
+
"max_cache_len": max_cache_len,
|
192 |
+
"device": device,
|
193 |
+
"dtype": cache_dtype,
|
194 |
+
"layer_device_map": layer_device_map,
|
195 |
+
}
|
196 |
+
self._cache = cache_cls(**cache_kwargs)
|
197 |
+
else:
|
198 |
+
self._cache.reset()
|
199 |
+
return self._cache
|
200 |
+
|
201 |
+
GenerationMixin._prepare_cache_for_generation = _prepare_cache_for_generation
|
202 |
+
GenerationMixin._get_cache = _get_cache
|
203 |
+
|
204 |
+
class SambaYCache(Cache):
|
205 |
+
"""
|
206 |
+
A dynamic cache that can handle the sliding window attention cache, one layer of full attention cache and the mamba cache
|
207 |
+
(which has a constant shape regardless of seq_len).
|
208 |
+
|
209 |
+
"""
|
210 |
+
|
211 |
+
def __init__(self,
|
212 |
+
config: Phi4FlashConfig,
|
213 |
+
batch_size: int = None,
|
214 |
+
max_cache_len: int = None,
|
215 |
+
device: Union[torch.device, str] = "cuda",
|
216 |
+
dtype: torch.dtype = torch.float16,
|
217 |
+
max_batch_size: Optional[int] = None,
|
218 |
+
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None,
|
219 |
+
) -> None:
|
220 |
+
super().__init__()
|
221 |
+
self.dtype = dtype
|
222 |
+
self.has_previous_state = False # only used by mamba
|
223 |
+
intermediate_size = config.mamba_expand * config.hidden_size
|
224 |
+
ssm_state_size = config.mamba_d_state
|
225 |
+
conv_kernel_size = config.mamba_d_conv
|
226 |
+
self.conv_kernel_size = conv_kernel_size
|
227 |
+
|
228 |
+
if batch_size is not None:
|
229 |
+
logger.warning_once(
|
230 |
+
f"The 'batch_size' argument of {self.__class__.__name__} is deprecated and will be removed in "
|
231 |
+
"v4.49. Use the more precisely named 'max_batch_size' argument instead."
|
232 |
+
)
|
233 |
+
|
234 |
+
self.max_cache_len = max_cache_len
|
235 |
+
self.max_batch_size = batch_size or max_batch_size
|
236 |
+
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
237 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
238 |
+
self.num_key_value_heads = config.num_key_value_heads
|
239 |
+
self.global_attn_idx = config.num_hidden_layers//2 + 1
|
240 |
+
self.key_cache: List[torch.Tensor] = []
|
241 |
+
self.value_cache: List[torch.Tensor] = []
|
242 |
+
global_cache_shape = (self.max_batch_size, self.num_key_value_heads, max_cache_len, self.head_dim)
|
243 |
+
sliding_cache_shape = (
|
244 |
+
self.max_batch_size,
|
245 |
+
self.num_key_value_heads,
|
246 |
+
min(config.sliding_window[1], max_cache_len),
|
247 |
+
self.head_dim,
|
248 |
+
)
|
249 |
+
conv_cache_shape = (self.max_batch_size, intermediate_size, conv_kernel_size)
|
250 |
+
ssm_cache_shape = (self.max_batch_size, intermediate_size, ssm_state_size)
|
251 |
+
for i in range(config.num_hidden_layers//2 + 2):
|
252 |
+
if layer_device_map is not None:
|
253 |
+
layer_device = layer_device_map[i]
|
254 |
+
else:
|
255 |
+
layer_device = device
|
256 |
+
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
|
257 |
+
# breaks when updating the cache.
|
258 |
+
if i == self.global_attn_idx:
|
259 |
+
key_cache_shape = value_cache_shape = global_cache_shape
|
260 |
+
elif i % 2 == 0:
|
261 |
+
key_cache_shape = conv_cache_shape
|
262 |
+
value_cache_shape = ssm_cache_shape
|
263 |
+
else:
|
264 |
+
key_cache_shape = value_cache_shape = sliding_cache_shape
|
265 |
+
new_layer_key_cache = torch.zeros(key_cache_shape, dtype=dtype, device=layer_device)
|
266 |
+
new_layer_value_cache = torch.zeros(value_cache_shape, dtype=dtype, device=layer_device)
|
267 |
+
torch._dynamo.mark_static_address(new_layer_key_cache)
|
268 |
+
torch._dynamo.mark_static_address(new_layer_value_cache)
|
269 |
+
self.key_cache.append(new_layer_key_cache)
|
270 |
+
self.value_cache.append(new_layer_value_cache)
|
271 |
+
|
272 |
+
def _sliding_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
|
273 |
+
if cache_position.shape[0] > max_cache_len:
|
274 |
+
k_out = key_states[:, :, -max_cache_len:, :]
|
275 |
+
v_out = value_states[:, :, -max_cache_len:, :]
|
276 |
+
# Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
|
277 |
+
self.key_cache[layer_idx] += k_out
|
278 |
+
self.value_cache[layer_idx] += v_out
|
279 |
+
# we should return the whole states instead of k_out, v_out to take the whole prompt
|
280 |
+
# into consideration when building kv cache instead of just throwing away tokens outside of the window
|
281 |
+
return key_states, value_states
|
282 |
+
|
283 |
+
slicing = torch.ones(max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
|
284 |
+
cache_position = cache_position.clamp(0, max_cache_len - 1)
|
285 |
+
to_shift = cache_position >= max_cache_len - 1
|
286 |
+
indices = (slicing + to_shift[-1].int() - 1) % max_cache_len
|
287 |
+
k_out = k_out[:, :, indices]
|
288 |
+
v_out = v_out[:, :, indices]
|
289 |
+
|
290 |
+
k_out[:, :, cache_position] = key_states
|
291 |
+
v_out[:, :, cache_position] = value_states
|
292 |
+
# `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
|
293 |
+
self.key_cache[layer_idx].zero_()
|
294 |
+
self.value_cache[layer_idx].zero_()
|
295 |
+
|
296 |
+
self.key_cache[layer_idx] += k_out
|
297 |
+
self.value_cache[layer_idx] += v_out
|
298 |
+
return k_out, v_out
|
299 |
+
|
300 |
+
def _static_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
|
301 |
+
k_out[:, :, cache_position] = key_states
|
302 |
+
v_out[:, :, cache_position] = value_states
|
303 |
+
|
304 |
+
self.key_cache[layer_idx] = k_out
|
305 |
+
self.value_cache[layer_idx] = v_out
|
306 |
+
return k_out, v_out
|
307 |
+
|
308 |
+
def update(
|
309 |
+
self,
|
310 |
+
key_states: torch.Tensor,
|
311 |
+
value_states: torch.Tensor,
|
312 |
+
layer_idx: int,
|
313 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
314 |
+
) -> Tuple[torch.Tensor]:
|
315 |
+
cache_position = cache_kwargs.get("cache_position")
|
316 |
+
k_out = self.key_cache[layer_idx]
|
317 |
+
v_out = self.value_cache[layer_idx]
|
318 |
+
if layer_idx == self.global_attn_idx:
|
319 |
+
update_fn = self._static_update
|
320 |
+
elif layer_idx % 2 == 1:
|
321 |
+
update_fn = self._sliding_update
|
322 |
+
|
323 |
+
return update_fn(
|
324 |
+
cache_position,
|
325 |
+
layer_idx,
|
326 |
+
key_states,
|
327 |
+
value_states,
|
328 |
+
k_out,
|
329 |
+
v_out,
|
330 |
+
k_out.shape[2],
|
331 |
+
)
|
332 |
+
|
333 |
+
def get_max_cache_shape(self) -> Optional[int]:
|
334 |
+
return self.max_cache_len
|
335 |
+
|
336 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0):
|
337 |
+
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
338 |
+
# limit the check to the first batch member and head dimension.
|
339 |
+
# TODO: deprecate this function in favor of `cache_position`
|
340 |
+
return (self.key_cache[self.global_attn_idx][0, 0].any(dim=-1)).sum()
|
341 |
+
|
342 |
+
def reset(self):
|
343 |
+
"""Resets the cache values while preserving the objects"""
|
344 |
+
for layer_idx in range(len(self.key_cache)):
|
345 |
+
# In-place ops prevent breaking the static address
|
346 |
+
self.key_cache[layer_idx].zero_()
|
347 |
+
self.value_cache[layer_idx].zero_()
|
348 |
+
|
349 |
+
@property
|
350 |
+
def batch_size(self):
|
351 |
+
logger.warning_once(
|
352 |
+
f"The 'batch_size' attribute of {self.__class__.__name__} is deprecated and will be removed in "
|
353 |
+
"v4.49. Use the more precisely named 'self.max_batch_size' attribute instead."
|
354 |
+
)
|
355 |
+
return self.max_batch_size
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
|
360 |
+
swiglu_fwd_codestring = """
|
361 |
+
template <typename T> T swiglu_fwd(T x, T y) {
|
362 |
+
return float(x) * float(y) / (1.0f + ::exp(-float(x)));
|
363 |
+
}
|
364 |
+
"""
|
365 |
+
swiglu_bwd_codestring = """
|
366 |
+
template <typename T> T swiglu_bwd(T x, T y, T g, T& dx, T& dy) {
|
367 |
+
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
|
368 |
+
dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y);
|
369 |
+
dy = float(x) * x_sigmoid * float(g);
|
370 |
+
}
|
371 |
+
"""
|
372 |
+
swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring)
|
373 |
+
swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2)
|
374 |
+
|
375 |
+
|
376 |
+
class SwiGLUFunction(torch.autograd.Function):
|
377 |
+
|
378 |
+
@staticmethod
|
379 |
+
def forward(ctx, x, y):
|
380 |
+
ctx.save_for_backward(x, y)
|
381 |
+
return swiglu_fwd(x, y)
|
382 |
+
|
383 |
+
@staticmethod
|
384 |
+
def backward(ctx, dout):
|
385 |
+
x, y = ctx.saved_tensors
|
386 |
+
return swiglu_bwd(x, y, dout)
|
387 |
+
|
388 |
+
swiglu = SwiGLUFunction.apply
|
389 |
+
|
390 |
+
|
391 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->SambaY
|
392 |
+
class SambaYRMSNorm(nn.Module):
|
393 |
+
def __init__(self, hidden_size, eps=1e-5):
|
394 |
+
"""
|
395 |
+
SambaYRMSNorm is equivalent to T5LayerNorm
|
396 |
+
"""
|
397 |
+
super().__init__()
|
398 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
399 |
+
self.variance_epsilon = eps
|
400 |
+
|
401 |
+
def forward(self, hidden_states):
|
402 |
+
input_dtype = hidden_states.dtype
|
403 |
+
hidden_states = hidden_states.to(torch.float32)
|
404 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
405 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
406 |
+
return self.weight * hidden_states.to(input_dtype)
|
407 |
+
|
408 |
+
|
409 |
+
PHI_NORM_CLASS = nn.LayerNorm
|
410 |
+
|
411 |
+
|
412 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
413 |
+
def _get_unpad_data(attention_mask):
|
414 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
415 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
416 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
417 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
418 |
+
return (
|
419 |
+
indices,
|
420 |
+
cu_seqlens,
|
421 |
+
max_seqlen_in_batch,
|
422 |
+
)
|
423 |
+
|
424 |
+
|
425 |
+
class SambaYMLP(nn.Module):
|
426 |
+
"""Gated Linear Unit.
|
427 |
+
|
428 |
+
Reference:
|
429 |
+
Language Modeling with Gated Convolutional Networks.
|
430 |
+
https://arxiv.org/pdf/1612.08083v3.pdf.
|
431 |
+
|
432 |
+
"""
|
433 |
+
|
434 |
+
def __init__(self, config):
|
435 |
+
super().__init__()
|
436 |
+
|
437 |
+
self.config = config
|
438 |
+
self.fc1 = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
439 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
440 |
+
|
441 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
442 |
+
|
443 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
444 |
+
y = self.fc1(hidden_states)
|
445 |
+
|
446 |
+
# Special case for SwiGLU
|
447 |
+
if self.config.hidden_act == "silu" and swiglu is not None:
|
448 |
+
gate, y = y.chunk(2, dim=-1)
|
449 |
+
y = swiglu(gate, y)
|
450 |
+
else:
|
451 |
+
gate, y = y.chunk(2, dim=-1)
|
452 |
+
y = y * self.activation_fn(gate)
|
453 |
+
|
454 |
+
return self.fc2(y)
|
455 |
+
|
456 |
+
|
457 |
+
class SambaYAttention(nn.Module):
|
458 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
459 |
+
|
460 |
+
def __init__(self, config: Phi4FlashConfig, layer_idx: Optional[int] = None, yoco_cross: bool = False):
|
461 |
+
super().__init__()
|
462 |
+
self.config = config
|
463 |
+
self.layer_idx = layer_idx
|
464 |
+
if layer_idx is None:
|
465 |
+
logger.warning_once(
|
466 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
467 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
468 |
+
"when creating this class."
|
469 |
+
)
|
470 |
+
|
471 |
+
self.attention_dropout = config.attention_dropout
|
472 |
+
self.hidden_size = config.hidden_size
|
473 |
+
self.num_heads = config.num_attention_heads
|
474 |
+
self.head_dim = self.hidden_size // self.num_heads
|
475 |
+
self.num_key_value_heads = config.num_key_value_heads
|
476 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
477 |
+
self.max_position_embeddings = config.max_position_embeddings
|
478 |
+
self.is_causal = True
|
479 |
+
self.yoco_cross = yoco_cross
|
480 |
+
|
481 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
482 |
+
raise ValueError(
|
483 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
484 |
+
f" and `num_heads`: {self.num_heads})."
|
485 |
+
)
|
486 |
+
|
487 |
+
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
|
488 |
+
self.out_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True)
|
489 |
+
if yoco_cross:
|
490 |
+
self.Wqkv = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
491 |
+
else:
|
492 |
+
self.Wqkv = nn.Linear(self.hidden_size, op_size, bias=True)
|
493 |
+
|
494 |
+
self.inner_cross_attn = FlashDiffCustomAttention(self.head_dim, self.layer_idx,)
|
495 |
+
|
496 |
+
|
497 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
498 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
499 |
+
|
500 |
+
def forward(
|
501 |
+
self,
|
502 |
+
hidden_states: torch.Tensor,
|
503 |
+
attention_mask: Optional[torch.Tensor] = None,
|
504 |
+
position_ids: Optional[torch.LongTensor] = None,
|
505 |
+
past_key_value: Optional[Cache] = None,
|
506 |
+
output_attentions: bool = False,
|
507 |
+
use_cache: bool = False,
|
508 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
509 |
+
raise NotImplementedError("SambaYAttention only support flash attention")
|
510 |
+
|
511 |
+
|
512 |
+
class SambaYFlashAttention2(SambaYAttention):
|
513 |
+
"""
|
514 |
+
SambaY flash attention module. This module inherits from `SambaYAttention` as the weights of the module stays
|
515 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
516 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
517 |
+
"""
|
518 |
+
|
519 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
520 |
+
def __init__(self, *args, **kwargs):
|
521 |
+
super().__init__(*args, **kwargs)
|
522 |
+
|
523 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
524 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
525 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
526 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
527 |
+
|
528 |
+
|
529 |
+
|
530 |
+
def forward(
|
531 |
+
self,
|
532 |
+
hidden_states: torch.Tensor,
|
533 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
534 |
+
position_ids: Optional[torch.LongTensor] = None,
|
535 |
+
past_key_value: Optional[Cache] = None,
|
536 |
+
output_attentions: bool = False,
|
537 |
+
use_cache: bool = False,
|
538 |
+
cache_position: Optional[torch.LongTensor] = None,
|
539 |
+
yoco_key_values: Optional[torch.Tensor] = None,
|
540 |
+
**kwargs,
|
541 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
542 |
+
# SambaYFlashAttention2 attention does not support output_attentions
|
543 |
+
|
544 |
+
output_attentions = False
|
545 |
+
if "padding_mask" in kwargs:
|
546 |
+
warnings.warn(
|
547 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
548 |
+
)
|
549 |
+
|
550 |
+
# overwrite attention_mask with padding_mask
|
551 |
+
attention_mask = kwargs.pop("padding_mask")
|
552 |
+
|
553 |
+
bsz, q_len, _ = hidden_states.size()
|
554 |
+
if self.yoco_cross:
|
555 |
+
q = self.Wqkv(hidden_states)
|
556 |
+
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim).transpose(1,2)
|
557 |
+
key_states, value_states = yoco_key_values
|
558 |
+
query_states = q
|
559 |
+
|
560 |
+
use_sliding_windows = False
|
561 |
+
else:
|
562 |
+
|
563 |
+
qkv = self.Wqkv(hidden_states)
|
564 |
+
query_pos = self.num_heads * self.head_dim
|
565 |
+
query_states = qkv[..., :query_pos]
|
566 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
567 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
568 |
+
|
569 |
+
# Flash attention requires the input to have the shape
|
570 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
571 |
+
# therefore we just need to keep the original shape
|
572 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
573 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
574 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
575 |
+
|
576 |
+
use_sliding_windows = self.config.sliding_window is not None and self.config.sliding_window[self.layer_idx] is not None
|
577 |
+
|
578 |
+
if past_key_value is not None:
|
579 |
+
|
580 |
+
cache_kwargs = {"cache_position": cache_position}# Specific to RoPE models
|
581 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
582 |
+
|
583 |
+
|
584 |
+
yoco_key_values = key_states, value_states
|
585 |
+
|
586 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
587 |
+
|
588 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
589 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
590 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
591 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
592 |
+
# in fp32.
|
593 |
+
|
594 |
+
if query_states.dtype == torch.float32:
|
595 |
+
if torch.is_autocast_enabled():
|
596 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
597 |
+
# Handle the case where the model is quantized
|
598 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
599 |
+
target_dtype = self.config._pre_quantization_dtype
|
600 |
+
else:
|
601 |
+
target_dtype = self.Wqkv.weight.dtype
|
602 |
+
|
603 |
+
logger.warning_once(
|
604 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
605 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
606 |
+
f" {target_dtype}."
|
607 |
+
)
|
608 |
+
|
609 |
+
query_states = query_states.to(target_dtype)
|
610 |
+
key_states = key_states.to(target_dtype)
|
611 |
+
value_states = value_states.to(target_dtype)
|
612 |
+
|
613 |
+
# Reashape to the expected shape for Flash Attention
|
614 |
+
# -> b,q,h,d
|
615 |
+
query_states = query_states.transpose(1, 2)
|
616 |
+
key_states = key_states.transpose(1, 2)
|
617 |
+
value_states = value_states.transpose(1, 2)
|
618 |
+
if attention_mask is not None:
|
619 |
+
key_states = key_states[:, :attention_mask.shape[-1]]
|
620 |
+
value_states = value_states[:, :attention_mask.shape[-1]]
|
621 |
+
attn_output = self._flash_attention_forward(
|
622 |
+
query_states,
|
623 |
+
key_states,
|
624 |
+
value_states,
|
625 |
+
attention_mask,
|
626 |
+
q_len,
|
627 |
+
dropout=attn_dropout,
|
628 |
+
use_sliding_windows=use_sliding_windows,
|
629 |
+
)
|
630 |
+
|
631 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
632 |
+
attn_output = self.out_proj(attn_output)
|
633 |
+
|
634 |
+
if not output_attentions:
|
635 |
+
attn_weights = None
|
636 |
+
|
637 |
+
return attn_output, attn_weights, yoco_key_values
|
638 |
+
|
639 |
+
def _flash_attention_forward(
|
640 |
+
self,
|
641 |
+
query_states,
|
642 |
+
key_states,
|
643 |
+
value_states,
|
644 |
+
attention_mask,
|
645 |
+
query_length,
|
646 |
+
dropout=0.0,
|
647 |
+
softmax_scale=None,
|
648 |
+
use_sliding_windows=False,
|
649 |
+
):
|
650 |
+
"""
|
651 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
652 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
653 |
+
|
654 |
+
Args:
|
655 |
+
query_states (`torch.Tensor`):
|
656 |
+
Input query states to be passed to Flash Attention API
|
657 |
+
key_states (`torch.Tensor`):
|
658 |
+
Input key states to be passed to Flash Attention API
|
659 |
+
value_states (`torch.Tensor`):
|
660 |
+
Input value states to be passed to Flash Attention API
|
661 |
+
attention_mask (`torch.Tensor`):
|
662 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
663 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
664 |
+
dropout (`float`):
|
665 |
+
Attention dropout
|
666 |
+
softmax_scale (`float`, *optional*):
|
667 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
668 |
+
use_sliding_windows (`bool`, *optional*):
|
669 |
+
Whether to activate sliding window attention.
|
670 |
+
"""
|
671 |
+
causal = self.is_causal
|
672 |
+
# Contains at least one padding token in the sequence
|
673 |
+
if attention_mask is not None:
|
674 |
+
batch_size = query_states.shape[0]
|
675 |
+
(
|
676 |
+
query_states,
|
677 |
+
key_states,
|
678 |
+
value_states,
|
679 |
+
indices_q,
|
680 |
+
cu_seq_lens,
|
681 |
+
max_seq_lens,
|
682 |
+
) = self._upad_input(query_states, key_states, value_states, attention_mask, query_length)
|
683 |
+
|
684 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
685 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
686 |
+
|
687 |
+
if not use_sliding_windows:
|
688 |
+
attn_output_unpad = self.inner_cross_attn(
|
689 |
+
query_states,
|
690 |
+
key_states,
|
691 |
+
value_states,
|
692 |
+
cu_seqlens_q=cu_seqlens_q,
|
693 |
+
cu_seqlens_k=cu_seqlens_k,
|
694 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
695 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
696 |
+
dropout_p=dropout,
|
697 |
+
softmax_scale=softmax_scale,
|
698 |
+
causal=causal,
|
699 |
+
)
|
700 |
+
else:
|
701 |
+
attn_output_unpad = self.inner_cross_attn(
|
702 |
+
query_states,
|
703 |
+
key_states,
|
704 |
+
value_states,
|
705 |
+
cu_seqlens_q=cu_seqlens_q,
|
706 |
+
cu_seqlens_k=cu_seqlens_k,
|
707 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
708 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
709 |
+
dropout_p=dropout,
|
710 |
+
softmax_scale=softmax_scale,
|
711 |
+
causal=causal,
|
712 |
+
window_size=(
|
713 |
+
self.config.sliding_window[self.layer_idx] -1,
|
714 |
+
self.config.sliding_window[self.layer_idx] -1,
|
715 |
+
),
|
716 |
+
)
|
717 |
+
|
718 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
719 |
+
else:
|
720 |
+
if not use_sliding_windows:
|
721 |
+
attn_output = self.inner_cross_attn(
|
722 |
+
query_states,
|
723 |
+
key_states,
|
724 |
+
value_states,
|
725 |
+
dropout_p=dropout,
|
726 |
+
softmax_scale=softmax_scale,
|
727 |
+
causal=causal,
|
728 |
+
)
|
729 |
+
else:
|
730 |
+
attn_output = self.inner_cross_attn(
|
731 |
+
query_states,
|
732 |
+
key_states,
|
733 |
+
value_states,
|
734 |
+
dropout_p=dropout,
|
735 |
+
softmax_scale=softmax_scale,
|
736 |
+
causal=causal,
|
737 |
+
window_size=(
|
738 |
+
self.config.sliding_window[self.layer_idx] -1,
|
739 |
+
self.config.sliding_window[self.layer_idx] -1,
|
740 |
+
),
|
741 |
+
)
|
742 |
+
|
743 |
+
return attn_output
|
744 |
+
|
745 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
746 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
747 |
+
|
748 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
749 |
+
|
750 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
751 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
752 |
+
|
753 |
+
if query_length == kv_seq_len:
|
754 |
+
query_layer = index_first_axis(
|
755 |
+
query_layer.reshape(batch_size * kv_seq_len, -1, head_dim),
|
756 |
+
indices_k,
|
757 |
+
)
|
758 |
+
cu_seqlens_q = cu_seqlens_k
|
759 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
760 |
+
indices_q = indices_k
|
761 |
+
elif query_length == 1:
|
762 |
+
max_seqlen_in_batch_q = 1
|
763 |
+
cu_seqlens_q = torch.arange(
|
764 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
765 |
+
) # There is a memcpy here, that is very bad.
|
766 |
+
indices_q = cu_seqlens_q[:-1]
|
767 |
+
query_layer = query_layer.squeeze(1)
|
768 |
+
else:
|
769 |
+
# The -q_len: slice assumes left padding.
|
770 |
+
attention_mask = attention_mask[:, -query_length:]
|
771 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
772 |
+
|
773 |
+
return (
|
774 |
+
query_layer,
|
775 |
+
key_layer,
|
776 |
+
value_layer,
|
777 |
+
indices_q,
|
778 |
+
(cu_seqlens_q, cu_seqlens_k),
|
779 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
780 |
+
)
|
781 |
+
|
782 |
+
|
783 |
+
|
784 |
+
class Phi3Mamba(nn.Module):
|
785 |
+
def __init__(
|
786 |
+
self,
|
787 |
+
d_model,
|
788 |
+
d_state=16,
|
789 |
+
d_conv=4,
|
790 |
+
expand=2,
|
791 |
+
dt_rank="auto",
|
792 |
+
conv_bias=True,
|
793 |
+
bias=False,
|
794 |
+
use_fast_path=True, # Fused kernel options
|
795 |
+
layer_idx=None,
|
796 |
+
yoco_cross=False,
|
797 |
+
yoco_kv=False,
|
798 |
+
dtype=None,
|
799 |
+
):
|
800 |
+
factory_kwargs = {"dtype": dtype}
|
801 |
+
super().__init__()
|
802 |
+
self.d_model = d_model
|
803 |
+
self.d_state = d_state
|
804 |
+
self.d_conv = d_conv
|
805 |
+
self.expand = expand
|
806 |
+
self.d_inner = int(self.expand * self.d_model)
|
807 |
+
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
|
808 |
+
self.use_fast_path = use_fast_path
|
809 |
+
self.layer_idx = layer_idx
|
810 |
+
|
811 |
+
self.yoco_cross = yoco_cross
|
812 |
+
self.yoco_kv = yoco_kv
|
813 |
+
if self.yoco_cross:
|
814 |
+
self.in_proj = nn.Linear(self.d_model, self.d_inner, bias=bias, **factory_kwargs)
|
815 |
+
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
816 |
+
else:
|
817 |
+
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
|
818 |
+
|
819 |
+
self.conv1d = nn.Conv1d(
|
820 |
+
in_channels=self.d_inner,
|
821 |
+
out_channels=self.d_inner,
|
822 |
+
bias=conv_bias,
|
823 |
+
kernel_size=d_conv,
|
824 |
+
groups=self.d_inner,
|
825 |
+
padding=d_conv - 1,
|
826 |
+
**factory_kwargs,
|
827 |
+
)
|
828 |
+
|
829 |
+
self.activation = "silu"
|
830 |
+
self.act = nn.SiLU()
|
831 |
+
|
832 |
+
self.x_proj = nn.Linear(
|
833 |
+
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
|
834 |
+
)
|
835 |
+
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
|
836 |
+
|
837 |
+
# S4D real initialization
|
838 |
+
A = repeat(
|
839 |
+
torch.arange(1, self.d_state + 1, dtype=torch.float32),
|
840 |
+
"n -> d n",
|
841 |
+
d=self.d_inner,
|
842 |
+
).contiguous()
|
843 |
+
A_log = torch.log(A) # Keep A_log in fp32
|
844 |
+
self.A_log = nn.Parameter(A_log)
|
845 |
+
|
846 |
+
# D "skip" parameter
|
847 |
+
self.D = nn.Parameter(torch.ones(self.d_inner)) # Keep in fp32
|
848 |
+
|
849 |
+
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
850 |
+
|
851 |
+
def forward(self, hidden_states, inference_params=None, mask= None, yoco_key_values = None, cache_position = None):
|
852 |
+
"""
|
853 |
+
hidden_states: (B, L, D)
|
854 |
+
Returns: same shape as hidden_states
|
855 |
+
"""
|
856 |
+
|
857 |
+
if self.yoco_cross:
|
858 |
+
out = self.in_proj(hidden_states)
|
859 |
+
out = swiglu(out, yoco_key_values)
|
860 |
+
out = self.out_proj(out)
|
861 |
+
return out, yoco_key_values
|
862 |
+
|
863 |
+
batch, seqlen, _ = hidden_states.shape
|
864 |
+
conv_state, ssm_state = None, None
|
865 |
+
if inference_params is not None:
|
866 |
+
conv_state, ssm_state = self._get_states_from_cache(inference_params)
|
867 |
+
if cache_position[0] > 0: #inference_params.get_seq_length(self.layer_idx) > 0:
|
868 |
+
# The states are updated inplace
|
869 |
+
out, _, _, yoco_key_values = self.step(hidden_states, conv_state, ssm_state, yoco_key_values)
|
870 |
+
return out, yoco_key_values
|
871 |
+
|
872 |
+
# We do matmul and transpose BLH -> HBL at the same time
|
873 |
+
xz = rearrange(
|
874 |
+
self.in_proj.weight @ rearrange(hidden_states.to(dtype = self.in_proj.weight.dtype), "b l d -> d (b l)"),
|
875 |
+
"d (b l) -> b d l",
|
876 |
+
l=seqlen,
|
877 |
+
)
|
878 |
+
if self.in_proj.bias is not None:
|
879 |
+
xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
|
880 |
+
|
881 |
+
|
882 |
+
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
|
883 |
+
# In the backward pass we write dx and dz next to each other to avoid torch.cat
|
884 |
+
if (not self.yoco_kv) and self.use_fast_path and inference_params is None: # Doesn't support outputting the states
|
885 |
+
out = mamba_inner_fn(
|
886 |
+
xz,
|
887 |
+
self.conv1d.weight,
|
888 |
+
self.conv1d.bias,
|
889 |
+
self.x_proj.weight,
|
890 |
+
self.dt_proj.weight,
|
891 |
+
self.out_proj.weight,
|
892 |
+
self.out_proj.bias,
|
893 |
+
A,
|
894 |
+
None, # input-dependent B
|
895 |
+
None, # input-dependent C
|
896 |
+
self.D.float(),
|
897 |
+
delta_bias=self.dt_proj.bias.float(),
|
898 |
+
mask=mask,
|
899 |
+
delta_softplus=True,
|
900 |
+
)
|
901 |
+
else:
|
902 |
+
x, z = xz.chunk(2, dim=1)
|
903 |
+
if self.yoco_kv:
|
904 |
+
z = z.transpose(-1,-2).contiguous()
|
905 |
+
if mask is not None:
|
906 |
+
x = x * mask.unsqueeze(1)
|
907 |
+
# Compute short convolution
|
908 |
+
if conv_state is not None:
|
909 |
+
# If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
|
910 |
+
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
|
911 |
+
conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) # Update state (B D W)
|
912 |
+
if causal_conv1d_fn is None:
|
913 |
+
x = self.act(self.conv1d(x)[..., :seqlen])
|
914 |
+
else:
|
915 |
+
assert self.activation in ["silu", "swish"]
|
916 |
+
x = causal_conv1d_fn(
|
917 |
+
x=x,
|
918 |
+
weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
|
919 |
+
bias=self.conv1d.bias,
|
920 |
+
activation=self.activation,
|
921 |
+
)
|
922 |
+
if mask is not None:
|
923 |
+
x = x * mask.unsqueeze(1)
|
924 |
+
# We're careful here about the layout, to avoid extra transposes.
|
925 |
+
# We want dt to have d as the slowest moving dimension
|
926 |
+
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
|
927 |
+
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d)
|
928 |
+
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
|
929 |
+
dt = self.dt_proj.weight @ dt.t()
|
930 |
+
dt = rearrange(dt, "d (b l) -> b d l", l=seqlen)
|
931 |
+
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
932 |
+
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
933 |
+
assert self.activation in ["silu", "swish"]
|
934 |
+
y = selective_scan_fn(
|
935 |
+
x,
|
936 |
+
dt,
|
937 |
+
A,
|
938 |
+
B,
|
939 |
+
C,
|
940 |
+
self.D.float(),
|
941 |
+
z= None if self.yoco_kv else z,
|
942 |
+
delta_bias=self.dt_proj.bias.float(),
|
943 |
+
delta_softplus=True,
|
944 |
+
return_last_state=ssm_state is not None,
|
945 |
+
)
|
946 |
+
if ssm_state is not None:
|
947 |
+
y, last_state = y
|
948 |
+
ssm_state.copy_(last_state)
|
949 |
+
y = rearrange(y, "b d l -> b l d")
|
950 |
+
if self.yoco_kv:
|
951 |
+
yoco_key_values = y
|
952 |
+
y = swiglu(z, y)
|
953 |
+
out = self.out_proj(y)
|
954 |
+
return out, yoco_key_values
|
955 |
+
|
956 |
+
def step(self, hidden_states, conv_state, ssm_state, yoco_key_values):
|
957 |
+
dtype = hidden_states.dtype
|
958 |
+
assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now"
|
959 |
+
xz = self.in_proj(hidden_states.to(dtype = self.in_proj.weight.dtype).squeeze(1)) # (B 2D)
|
960 |
+
x, z = xz.chunk(2, dim=-1) # (B D)
|
961 |
+
|
962 |
+
# Conv step
|
963 |
+
if causal_conv1d_update is None:
|
964 |
+
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
|
965 |
+
conv_state[:, :, -1] = x
|
966 |
+
x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
|
967 |
+
if self.conv1d.bias is not None:
|
968 |
+
x = x + self.conv1d.bias
|
969 |
+
x = self.act(x).to(dtype=dtype)
|
970 |
+
else:
|
971 |
+
x = causal_conv1d_update(
|
972 |
+
x,
|
973 |
+
conv_state,
|
974 |
+
rearrange(self.conv1d.weight, "d 1 w -> d w"),
|
975 |
+
self.conv1d.bias,
|
976 |
+
self.activation,
|
977 |
+
)
|
978 |
+
|
979 |
+
x_db = self.x_proj(x) # (B dt_rank+2*d_state)
|
980 |
+
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
|
981 |
+
# Don't add dt_bias here
|
982 |
+
dt = F.linear(dt, self.dt_proj.weight) # (B d_inner)
|
983 |
+
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
|
984 |
+
|
985 |
+
# SSM step
|
986 |
+
if selective_state_update is None:
|
987 |
+
# Discretize A and B
|
988 |
+
dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype))
|
989 |
+
dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A))
|
990 |
+
dB = torch.einsum("bd,bn->bdn", dt, B)
|
991 |
+
ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB)
|
992 |
+
y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C)
|
993 |
+
y = y + self.D.to(dtype) * x
|
994 |
+
y = y * self.act(z) # (B D)
|
995 |
+
else:
|
996 |
+
y = selective_state_update(
|
997 |
+
ssm_state, x, dt, A, B, C, self.D, z= None if self.yoco_kv else z, dt_bias=self.dt_proj.bias, dt_softplus=True
|
998 |
+
)
|
999 |
+
if self.yoco_kv:
|
1000 |
+
yoco_key_values = y.unsqueeze(1)
|
1001 |
+
y = swiglu(z, y)
|
1002 |
+
out = self.out_proj(y)
|
1003 |
+
return out.unsqueeze(1), conv_state, ssm_state, yoco_key_values
|
1004 |
+
|
1005 |
+
def _get_states_from_cache(self, inference_params):
|
1006 |
+
conv_state, ssm_state = inference_params.key_cache[self.layer_idx], inference_params.value_cache[self.layer_idx]
|
1007 |
+
return conv_state, ssm_state
|
1008 |
+
|
1009 |
+
|
1010 |
+
|
1011 |
+
|
1012 |
+
class SambaYDecoderLayer(nn.Module):
|
1013 |
+
def __init__(self, config: Phi4FlashConfig, layer_idx: int):
|
1014 |
+
super().__init__()
|
1015 |
+
|
1016 |
+
self.mlp = SambaYMLP(config)
|
1017 |
+
self.input_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps)
|
1018 |
+
|
1019 |
+
self.yoco_kv = False
|
1020 |
+
self.yoco_cross = False
|
1021 |
+
self.yoco_mb = False
|
1022 |
+
self.layer_idx = layer_idx
|
1023 |
+
assert config.num_hidden_layers % 4 == 0, 'n_layer should be divisible by 4 for SambaY '
|
1024 |
+
if layer_idx >= config.num_hidden_layers//2:
|
1025 |
+
self.yoco_mb = True
|
1026 |
+
self.yoco_kv = (layer_idx >= (config.num_hidden_layers//2 +1))
|
1027 |
+
self.yoco_cross = (layer_idx >= (config.num_hidden_layers//2 +2))
|
1028 |
+
if (layer_idx >= (config.num_hidden_layers//2 +1)):
|
1029 |
+
config = copy.deepcopy(config)
|
1030 |
+
config.sliding_window = None
|
1031 |
+
self.config= config
|
1032 |
+
|
1033 |
+
self.use_mamba = config.mb_per_layer > 0 and layer_idx % config.mb_per_layer == 0
|
1034 |
+
if self.use_mamba:
|
1035 |
+
factory_kwargs = {"d_conv": config.mamba_d_conv, "d_state": config.mamba_d_state, "expand": config.mamba_expand , "dtype": None}
|
1036 |
+
self.attn = Phi3Mamba(config.hidden_size, layer_idx=layer_idx, yoco_cross=self.yoco_cross, yoco_kv=self.yoco_mb, **factory_kwargs)
|
1037 |
+
else:
|
1038 |
+
self.attn = SambaYFlashAttention2(config, layer_idx=layer_idx, yoco_cross=self.yoco_cross)
|
1039 |
+
|
1040 |
+
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
1041 |
+
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
1042 |
+
self.post_attention_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps)
|
1043 |
+
|
1044 |
+
def forward(
|
1045 |
+
self,
|
1046 |
+
hidden_states: torch.Tensor,
|
1047 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1048 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1049 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1050 |
+
output_attentions: Optional[bool] = False,
|
1051 |
+
use_cache: Optional[bool] = False,
|
1052 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1053 |
+
ssm_output: Optional[torch.Tensor] = None,
|
1054 |
+
yoco_key_values: Optional[torch.Tensor] = None,
|
1055 |
+
**kwargs,
|
1056 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1057 |
+
"""
|
1058 |
+
Args:
|
1059 |
+
hidden_states (`torch.FloatTensor`):
|
1060 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
1061 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1062 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
1063 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
1064 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
1065 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
1066 |
+
output_attentions (`bool`, *optional*):
|
1067 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1068 |
+
returned tensors for more detail.
|
1069 |
+
use_cache (`bool`, *optional*):
|
1070 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1071 |
+
(see `past_key_values`).
|
1072 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1073 |
+
"""
|
1074 |
+
|
1075 |
+
residual = hidden_states
|
1076 |
+
|
1077 |
+
hidden_states = self.input_layernorm(hidden_states.to(dtype=self.input_layernorm.weight.dtype))
|
1078 |
+
|
1079 |
+
if self.use_mamba:
|
1080 |
+
attn_outputs, ssm_output = self.attn(
|
1081 |
+
hidden_states, inference_params=past_key_value,
|
1082 |
+
mask = attention_mask, yoco_key_values = ssm_output,
|
1083 |
+
cache_position=cache_position,
|
1084 |
+
)
|
1085 |
+
residual = residual.to(torch.float32)
|
1086 |
+
self_attn_weights = None
|
1087 |
+
else:
|
1088 |
+
if self.config.sliding_window is not None and self.config.sliding_window[self.layer_idx] is not None and attention_mask is not None: # efficient SDPA and no padding
|
1089 |
+
if past_key_value is not None and cache_position[0] > 0: # when decoding
|
1090 |
+
attention_mask = attention_mask[:, -self.config.sliding_window[self.layer_idx]:]
|
1091 |
+
#hidden_states = self.input_layernorm2(hidden_states.to(dtype=self.input_layernorm2.weight.dtype))
|
1092 |
+
# Self Attention
|
1093 |
+
attn_outputs, self_attn_weights, yoco_key_values = self.attn(
|
1094 |
+
hidden_states=hidden_states,
|
1095 |
+
attention_mask=attention_mask,
|
1096 |
+
position_ids=position_ids,
|
1097 |
+
past_key_value=past_key_value,
|
1098 |
+
output_attentions=output_attentions,
|
1099 |
+
use_cache=use_cache,
|
1100 |
+
cache_position=cache_position,
|
1101 |
+
yoco_key_values = yoco_key_values,
|
1102 |
+
)
|
1103 |
+
|
1104 |
+
hidden_states = residual + self.resid_attn_dropout(attn_outputs)
|
1105 |
+
|
1106 |
+
residual = hidden_states
|
1107 |
+
hidden_states = self.post_attention_layernorm(hidden_states.to(dtype=self.post_attention_layernorm.weight.dtype))
|
1108 |
+
hidden_states = self.mlp(hidden_states)
|
1109 |
+
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
|
1110 |
+
|
1111 |
+
outputs = (hidden_states,)
|
1112 |
+
outputs += (ssm_output,)
|
1113 |
+
outputs += (yoco_key_values,)
|
1114 |
+
if output_attentions:
|
1115 |
+
outputs += (self_attn_weights,)
|
1116 |
+
|
1117 |
+
return outputs
|
1118 |
+
|
1119 |
+
|
1120 |
+
PHI_START_DOCSTRING = r"""
|
1121 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1122 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1123 |
+
etc.)
|
1124 |
+
|
1125 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1126 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1127 |
+
and behavior.
|
1128 |
+
|
1129 |
+
Parameters:
|
1130 |
+
config ([`Phi4FlashConfig`]):
|
1131 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1132 |
+
load the weights associated with the model, only the configuration. Check out the
|
1133 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1134 |
+
"""
|
1135 |
+
|
1136 |
+
|
1137 |
+
@add_start_docstrings(
|
1138 |
+
"The bare Phi4Flash Model outputting raw hidden-states without any specific head on top.",
|
1139 |
+
PHI_START_DOCSTRING,
|
1140 |
+
)
|
1141 |
+
class Phi4FlashPreTrainedModel(PreTrainedModel):
|
1142 |
+
config_class = Phi4FlashConfig
|
1143 |
+
base_model_prefix = "model"
|
1144 |
+
supports_gradient_checkpointing = True
|
1145 |
+
_no_split_modules = ["SambaYDecoderLayer"]
|
1146 |
+
_skip_keys_device_placement = "past_key_values"
|
1147 |
+
_supports_flash_attn_2 = True
|
1148 |
+
_supports_sdpa = False
|
1149 |
+
_supports_cache_class = True
|
1150 |
+
|
1151 |
+
def _init_weights(self, module):
|
1152 |
+
std = self.config.initializer_range
|
1153 |
+
if isinstance(module, nn.Linear):
|
1154 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1155 |
+
if module.bias is not None:
|
1156 |
+
module.bias.data.zero_()
|
1157 |
+
elif isinstance(module, nn.Embedding):
|
1158 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1159 |
+
if module.padding_idx is not None:
|
1160 |
+
module.weight.data[module.padding_idx].zero_()
|
1161 |
+
|
1162 |
+
|
1163 |
+
PHI_INPUTS_DOCSTRING = r"""
|
1164 |
+
Args:
|
1165 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1166 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1167 |
+
it.
|
1168 |
+
|
1169 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1170 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1171 |
+
|
1172 |
+
[What are input IDs?](../glossary#input-ids)
|
1173 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1174 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1175 |
+
|
1176 |
+
- 1 for tokens that are **not masked**,
|
1177 |
+
- 0 for tokens that are **masked**.
|
1178 |
+
|
1179 |
+
[What are attention masks?](../glossary#attention-mask)
|
1180 |
+
|
1181 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1182 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1183 |
+
|
1184 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1185 |
+
`past_key_values`).
|
1186 |
+
|
1187 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1188 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1189 |
+
information on the default strategy.
|
1190 |
+
|
1191 |
+
- 1 indicates the head is **not masked**,
|
1192 |
+
- 0 indicates the head is **masked**.
|
1193 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1194 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1195 |
+
config.n_positions - 1]`.
|
1196 |
+
|
1197 |
+
[What are position IDs?](../glossary#position-ids)
|
1198 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1199 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1200 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1201 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1202 |
+
|
1203 |
+
Two formats are allowed:
|
1204 |
+
- a [`~cache_utils.Cache`] instance;
|
1205 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1206 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1207 |
+
cache format.
|
1208 |
+
|
1209 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1210 |
+
legacy cache format will be returned.
|
1211 |
+
|
1212 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1213 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1214 |
+
of shape `(batch_size, sequence_length)`.
|
1215 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1216 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1217 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1218 |
+
model's internal embedding lookup matrix.
|
1219 |
+
use_cache (`bool`, *optional*):
|
1220 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1221 |
+
`past_key_values`).
|
1222 |
+
output_attentions (`bool`, *optional*):
|
1223 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1224 |
+
tensors for more detail.
|
1225 |
+
output_hidden_states (`bool`, *optional*):
|
1226 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1227 |
+
more detail.
|
1228 |
+
return_dict (`bool`, *optional*):
|
1229 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1230 |
+
"""
|
1231 |
+
|
1232 |
+
|
1233 |
+
@add_start_docstrings(
|
1234 |
+
"The bare Phi4Flash Model outputting raw hidden-states without any specific head on top.",
|
1235 |
+
PHI_START_DOCSTRING,
|
1236 |
+
)
|
1237 |
+
class Phi4FlashModel(Phi4FlashPreTrainedModel):
|
1238 |
+
"""
|
1239 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SambaYDecoderLayer`]
|
1240 |
+
|
1241 |
+
Args:
|
1242 |
+
config: Phi4FlashConfig
|
1243 |
+
"""
|
1244 |
+
|
1245 |
+
def __init__(self, config: Phi4FlashConfig):
|
1246 |
+
super().__init__(config)
|
1247 |
+
self.padding_idx = config.pad_token_id
|
1248 |
+
self.vocab_size = config.vocab_size
|
1249 |
+
|
1250 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1251 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
1252 |
+
self.layers = nn.ModuleList(
|
1253 |
+
[SambaYDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1254 |
+
)
|
1255 |
+
self.final_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps)
|
1256 |
+
|
1257 |
+
self._attn_implementation = config._attn_implementation
|
1258 |
+
|
1259 |
+
self.gradient_checkpointing = False
|
1260 |
+
# Initialize weights and apply final processing
|
1261 |
+
self.post_init()
|
1262 |
+
|
1263 |
+
def get_input_embeddings(self):
|
1264 |
+
return self.embed_tokens
|
1265 |
+
|
1266 |
+
def set_input_embeddings(self, value):
|
1267 |
+
self.embed_tokens = value
|
1268 |
+
|
1269 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
1270 |
+
def forward(
|
1271 |
+
self,
|
1272 |
+
input_ids: torch.LongTensor = None,
|
1273 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1274 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1275 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1276 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1277 |
+
use_cache: Optional[bool] = None,
|
1278 |
+
output_attentions: Optional[bool] = None,
|
1279 |
+
output_hidden_states: Optional[bool] = None,
|
1280 |
+
return_dict: Optional[bool] = None,
|
1281 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1282 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1283 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1284 |
+
output_hidden_states = (
|
1285 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1286 |
+
)
|
1287 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1288 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1289 |
+
|
1290 |
+
# retrieve input_ids and inputs_embeds
|
1291 |
+
if input_ids is not None and inputs_embeds is not None:
|
1292 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1293 |
+
elif input_ids is not None:
|
1294 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1295 |
+
elif inputs_embeds is not None:
|
1296 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1297 |
+
else:
|
1298 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1299 |
+
|
1300 |
+
|
1301 |
+
if self.gradient_checkpointing and self.training:
|
1302 |
+
if use_cache:
|
1303 |
+
logger.warning_once(
|
1304 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1305 |
+
)
|
1306 |
+
use_cache = False
|
1307 |
+
|
1308 |
+
if inputs_embeds is None:
|
1309 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1310 |
+
|
1311 |
+
if use_cache and past_key_values is None and not self.training:
|
1312 |
+
batch_size, seq_len, _ = inputs_embeds.shape
|
1313 |
+
past_key_values = SambaYCache(
|
1314 |
+
self.config,
|
1315 |
+
max_batch_size=batch_size,
|
1316 |
+
max_cache_len=seq_len,
|
1317 |
+
device=self.device,
|
1318 |
+
dtype=inputs_embeds.dtype,
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
|
1322 |
+
if cache_position is None:
|
1323 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1324 |
+
cache_position = torch.arange(
|
1325 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1326 |
+
)
|
1327 |
+
|
1328 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache and not self.training:
|
1329 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1330 |
+
if is_padding_right:
|
1331 |
+
raise ValueError(
|
1332 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1333 |
+
" this may lead to unexpected behaviour for Flash Attention version of Phi4Flash. Make sure to "
|
1334 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1335 |
+
)
|
1336 |
+
|
1337 |
+
hidden_states = inputs_embeds
|
1338 |
+
|
1339 |
+
# decoder layers
|
1340 |
+
all_hidden_states = () if output_hidden_states else None
|
1341 |
+
all_self_attns = () if output_attentions else None
|
1342 |
+
ssm_output = None
|
1343 |
+
yoco_key_values = None
|
1344 |
+
for decoder_layer in self.layers: # TODO: only need to inference the first half of the layers during pre-fill
|
1345 |
+
if output_hidden_states:
|
1346 |
+
all_hidden_states += (hidden_states,)
|
1347 |
+
|
1348 |
+
if self.gradient_checkpointing and self.training:
|
1349 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1350 |
+
decoder_layer.__call__,
|
1351 |
+
hidden_states,
|
1352 |
+
attention_mask,
|
1353 |
+
position_ids,
|
1354 |
+
past_key_values,
|
1355 |
+
output_attentions,
|
1356 |
+
use_cache,
|
1357 |
+
cache_position,
|
1358 |
+
ssm_output,
|
1359 |
+
yoco_key_values,
|
1360 |
+
)
|
1361 |
+
else:
|
1362 |
+
layer_outputs = decoder_layer(
|
1363 |
+
hidden_states,
|
1364 |
+
attention_mask=attention_mask,
|
1365 |
+
position_ids=position_ids,
|
1366 |
+
past_key_value=past_key_values,
|
1367 |
+
output_attentions=output_attentions,
|
1368 |
+
use_cache=use_cache,
|
1369 |
+
cache_position = cache_position,
|
1370 |
+
ssm_output = ssm_output,
|
1371 |
+
yoco_key_values = yoco_key_values,
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
hidden_states = layer_outputs[0]
|
1375 |
+
ssm_output = layer_outputs[1]
|
1376 |
+
yoco_key_values = layer_outputs[2]
|
1377 |
+
|
1378 |
+
if output_attentions:
|
1379 |
+
all_self_attns += (layer_outputs[3],)
|
1380 |
+
|
1381 |
+
hidden_states = self.final_layernorm(hidden_states.to(dtype=self.final_layernorm.weight.dtype))
|
1382 |
+
|
1383 |
+
# add hidden states from the last decoder layer
|
1384 |
+
if output_hidden_states:
|
1385 |
+
all_hidden_states += (hidden_states,)
|
1386 |
+
|
1387 |
+
output = BaseModelOutputWithPast(
|
1388 |
+
last_hidden_state=hidden_states,
|
1389 |
+
past_key_values=past_key_values,
|
1390 |
+
hidden_states=all_hidden_states,
|
1391 |
+
attentions=all_self_attns,
|
1392 |
+
)
|
1393 |
+
return output if return_dict else output.to_tuple()
|
1394 |
+
|
1395 |
+
|
1396 |
+
|
1397 |
+
class Phi4FlashForCausalLM(Phi4FlashPreTrainedModel, GenerationMixin):
|
1398 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1399 |
+
|
1400 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi4Flash,bias=False->bias=True
|
1401 |
+
def __init__(self, config):
|
1402 |
+
super().__init__(config)
|
1403 |
+
self.model = Phi4FlashModel(config)
|
1404 |
+
self.vocab_size = config.vocab_size
|
1405 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1406 |
+
|
1407 |
+
# Initialize weights and apply final processing
|
1408 |
+
self.post_init()
|
1409 |
+
|
1410 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1411 |
+
def get_input_embeddings(self):
|
1412 |
+
return self.model.embed_tokens
|
1413 |
+
|
1414 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1415 |
+
def set_input_embeddings(self, value):
|
1416 |
+
self.model.embed_tokens = value
|
1417 |
+
|
1418 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1419 |
+
def get_output_embeddings(self):
|
1420 |
+
return self.lm_head
|
1421 |
+
|
1422 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1423 |
+
def set_output_embeddings(self, new_embeddings):
|
1424 |
+
self.lm_head = new_embeddings
|
1425 |
+
|
1426 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1427 |
+
def set_decoder(self, decoder):
|
1428 |
+
self.model = decoder
|
1429 |
+
|
1430 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1431 |
+
def get_decoder(self):
|
1432 |
+
return self.model
|
1433 |
+
|
1434 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
1435 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1436 |
+
def forward(
|
1437 |
+
self,
|
1438 |
+
input_ids: torch.LongTensor = None,
|
1439 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1440 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1441 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1442 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1443 |
+
labels: Optional[torch.LongTensor] = None,
|
1444 |
+
use_cache: Optional[bool] = None,
|
1445 |
+
output_attentions: Optional[bool] = None,
|
1446 |
+
output_hidden_states: Optional[bool] = None,
|
1447 |
+
return_dict: Optional[bool] = None,
|
1448 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1449 |
+
num_logits_to_keep: int = 0,
|
1450 |
+
**loss_kwargs,
|
1451 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1452 |
+
r"""
|
1453 |
+
Args:
|
1454 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1455 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1456 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1457 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1458 |
+
|
1459 |
+
Returns:
|
1460 |
+
|
1461 |
+
Example:
|
1462 |
+
|
1463 |
+
```python
|
1464 |
+
>>> from transformers import AutoTokenizer, Phi4FlashForCausalLM
|
1465 |
+
|
1466 |
+
>>> model = Phi4FlashForCausalLM.from_pretrained("microsoft/Phi4-mini-flash-reasoning")
|
1467 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi4-mini-flash-reasoning")
|
1468 |
+
|
1469 |
+
>>> prompt = "This is an example script ."
|
1470 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1471 |
+
|
1472 |
+
>>> # Generate
|
1473 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1474 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1475 |
+
'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str'
|
1476 |
+
```"""
|
1477 |
+
|
1478 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1479 |
+
output_hidden_states = (
|
1480 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1481 |
+
)
|
1482 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1483 |
+
|
1484 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1485 |
+
outputs = self.model(
|
1486 |
+
input_ids=input_ids,
|
1487 |
+
attention_mask=attention_mask,
|
1488 |
+
position_ids=position_ids,
|
1489 |
+
past_key_values=past_key_values,
|
1490 |
+
inputs_embeds=inputs_embeds,
|
1491 |
+
use_cache=use_cache,
|
1492 |
+
output_attentions=output_attentions,
|
1493 |
+
output_hidden_states=output_hidden_states,
|
1494 |
+
return_dict=return_dict,
|
1495 |
+
cache_position = cache_position,
|
1496 |
+
)
|
1497 |
+
|
1498 |
+
hidden_states = outputs[0]
|
1499 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
1500 |
+
|
1501 |
+
loss = None
|
1502 |
+
if labels is not None:
|
1503 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
1504 |
+
|
1505 |
+
if not return_dict:
|
1506 |
+
output = (logits,) + outputs[1:]
|
1507 |
+
return (loss,) + output if loss is not None else output
|
1508 |
+
|
1509 |
+
return CausalLMOutputWithPast(
|
1510 |
+
loss=loss,
|
1511 |
+
logits=logits,
|
1512 |
+
past_key_values=outputs.past_key_values,
|
1513 |
+
hidden_states=outputs.hidden_states,
|
1514 |
+
attentions=outputs.attentions,
|
1515 |
+
)
|
1516 |
+
|
1517 |
+
|
1518 |
+
@add_start_docstrings(
|
1519 |
+
"""
|
1520 |
+
The Phi4FlashModel with a sequence classification head on top (linear layer).
|
1521 |
+
|
1522 |
+
[`Phi4FlashForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1523 |
+
(e.g. GPT-2) do.
|
1524 |
+
|
1525 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1526 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1527 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1528 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1529 |
+
each row of the batch).
|
1530 |
+
""",
|
1531 |
+
PHI_START_DOCSTRING,
|
1532 |
+
)
|
1533 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->PHI,Llama->Phi4Flash with self.transformer->self.model, transformer_outputs->model_outputs
|
1534 |
+
class Phi4FlashForSequenceClassification(Phi4FlashPreTrainedModel):
|
1535 |
+
def __init__(self, config):
|
1536 |
+
super().__init__(config)
|
1537 |
+
self.num_labels = config.num_labels
|
1538 |
+
self.model = Phi4FlashModel(config)
|
1539 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1540 |
+
|
1541 |
+
# Initialize weights and apply final processing
|
1542 |
+
self.post_init()
|
1543 |
+
|
1544 |
+
def get_input_embeddings(self):
|
1545 |
+
return self.model.embed_tokens
|
1546 |
+
|
1547 |
+
def set_input_embeddings(self, value):
|
1548 |
+
self.model.embed_tokens = value
|
1549 |
+
|
1550 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
1551 |
+
def forward(
|
1552 |
+
self,
|
1553 |
+
input_ids: torch.LongTensor = None,
|
1554 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1555 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1556 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1557 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1558 |
+
labels: Optional[torch.LongTensor] = None,
|
1559 |
+
use_cache: Optional[bool] = None,
|
1560 |
+
output_attentions: Optional[bool] = None,
|
1561 |
+
output_hidden_states: Optional[bool] = None,
|
1562 |
+
return_dict: Optional[bool] = None,
|
1563 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1564 |
+
r"""
|
1565 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1566 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1567 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1568 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1569 |
+
"""
|
1570 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1571 |
+
|
1572 |
+
model_outputs = self.model(
|
1573 |
+
input_ids,
|
1574 |
+
attention_mask=attention_mask,
|
1575 |
+
position_ids=position_ids,
|
1576 |
+
past_key_values=past_key_values,
|
1577 |
+
inputs_embeds=inputs_embeds,
|
1578 |
+
use_cache=use_cache,
|
1579 |
+
output_attentions=output_attentions,
|
1580 |
+
output_hidden_states=output_hidden_states,
|
1581 |
+
return_dict=return_dict,
|
1582 |
+
)
|
1583 |
+
hidden_states = model_outputs[0]
|
1584 |
+
logits = self.score(hidden_states)
|
1585 |
+
|
1586 |
+
if input_ids is not None:
|
1587 |
+
batch_size = input_ids.shape[0]
|
1588 |
+
else:
|
1589 |
+
batch_size = inputs_embeds.shape[0]
|
1590 |
+
|
1591 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1592 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1593 |
+
if self.config.pad_token_id is None:
|
1594 |
+
sequence_lengths = -1
|
1595 |
+
else:
|
1596 |
+
if input_ids is not None:
|
1597 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1598 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1599 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1600 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1601 |
+
else:
|
1602 |
+
sequence_lengths = -1
|
1603 |
+
|
1604 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1605 |
+
|
1606 |
+
loss = None
|
1607 |
+
if labels is not None:
|
1608 |
+
labels = labels.to(logits.device)
|
1609 |
+
if self.config.problem_type is None:
|
1610 |
+
if self.num_labels == 1:
|
1611 |
+
self.config.problem_type = "regression"
|
1612 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1613 |
+
self.config.problem_type = "single_label_classification"
|
1614 |
+
else:
|
1615 |
+
self.config.problem_type = "multi_label_classification"
|
1616 |
+
|
1617 |
+
if self.config.problem_type == "regression":
|
1618 |
+
loss_fct = MSELoss()
|
1619 |
+
if self.num_labels == 1:
|
1620 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1621 |
+
else:
|
1622 |
+
loss = loss_fct(pooled_logits, labels)
|
1623 |
+
elif self.config.problem_type == "single_label_classification":
|
1624 |
+
loss_fct = CrossEntropyLoss()
|
1625 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1626 |
+
elif self.config.problem_type == "multi_label_classification":
|
1627 |
+
loss_fct = BCEWithLogitsLoss()
|
1628 |
+
loss = loss_fct(pooled_logits, labels)
|
1629 |
+
if not return_dict:
|
1630 |
+
output = (pooled_logits,) + model_outputs[1:]
|
1631 |
+
return ((loss,) + output) if loss is not None else output
|
1632 |
+
|
1633 |
+
return SequenceClassifierOutputWithPast(
|
1634 |
+
loss=loss,
|
1635 |
+
logits=pooled_logits,
|
1636 |
+
past_key_values=model_outputs.past_key_values,
|
1637 |
+
hidden_states=model_outputs.hidden_states,
|
1638 |
+
attentions=model_outputs.attentions,
|
1639 |
+
)
|
1640 |
+
|
1641 |
+
|
1642 |
+
@add_start_docstrings(
|
1643 |
+
"""
|
1644 |
+
Phi4FlashModel with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1645 |
+
Named-Entity-Recognition (NER) tasks.
|
1646 |
+
""",
|
1647 |
+
PHI_START_DOCSTRING,
|
1648 |
+
)
|
1649 |
+
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with MPT->PHI,Mpt->Phi4Flash,self.transformer->self.model,transformer_outputs->model_outputs
|
1650 |
+
class Phi4FlashForTokenClassification(Phi4FlashPreTrainedModel):
|
1651 |
+
def __init__(self, config: Phi4FlashConfig):
|
1652 |
+
super().__init__(config)
|
1653 |
+
self.num_labels = config.num_labels
|
1654 |
+
|
1655 |
+
self.model = Phi4FlashModel(config)
|
1656 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
1657 |
+
classifier_dropout = config.classifier_dropout
|
1658 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
1659 |
+
classifier_dropout = config.hidden_dropout
|
1660 |
+
else:
|
1661 |
+
classifier_dropout = 0.1
|
1662 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1663 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1664 |
+
|
1665 |
+
# Initialize weights and apply final processing
|
1666 |
+
self.post_init()
|
1667 |
+
|
1668 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
1669 |
+
@add_code_sample_docstrings(
|
1670 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1671 |
+
output_type=TokenClassifierOutput,
|
1672 |
+
config_class=_CONFIG_FOR_DOC,
|
1673 |
+
)
|
1674 |
+
def forward(
|
1675 |
+
self,
|
1676 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1677 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1678 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1679 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1680 |
+
labels: Optional[torch.Tensor] = None,
|
1681 |
+
use_cache: Optional[bool] = None,
|
1682 |
+
output_attentions: Optional[bool] = None,
|
1683 |
+
output_hidden_states: Optional[bool] = None,
|
1684 |
+
return_dict: Optional[bool] = None,
|
1685 |
+
**deprecated_arguments,
|
1686 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1687 |
+
r"""
|
1688 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1689 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1690 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1691 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1692 |
+
"""
|
1693 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1694 |
+
|
1695 |
+
model_outputs = self.model(
|
1696 |
+
input_ids,
|
1697 |
+
past_key_values=past_key_values,
|
1698 |
+
attention_mask=attention_mask,
|
1699 |
+
inputs_embeds=inputs_embeds,
|
1700 |
+
use_cache=use_cache,
|
1701 |
+
output_attentions=output_attentions,
|
1702 |
+
output_hidden_states=output_hidden_states,
|
1703 |
+
return_dict=return_dict,
|
1704 |
+
)
|
1705 |
+
|
1706 |
+
hidden_states = model_outputs[0]
|
1707 |
+
hidden_states = self.dropout(hidden_states)
|
1708 |
+
logits = self.classifier(hidden_states)
|
1709 |
+
|
1710 |
+
loss = None
|
1711 |
+
if labels is not None:
|
1712 |
+
# move labels to correct device to enable model parallelism
|
1713 |
+
labels = labels.to(logits.device)
|
1714 |
+
batch_size, seq_length = labels.shape
|
1715 |
+
loss_fct = CrossEntropyLoss()
|
1716 |
+
loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length))
|
1717 |
+
|
1718 |
+
if not return_dict:
|
1719 |
+
output = (logits,) + model_outputs[2:]
|
1720 |
+
return ((loss,) + output) if loss is not None else output
|
1721 |
+
|
1722 |
+
return TokenClassifierOutput(
|
1723 |
+
loss=loss,
|
1724 |
+
logits=logits,
|
1725 |
+
hidden_states=model_outputs.hidden_states,
|
1726 |
+
attentions=model_outputs.attentions,
|
1727 |
+
)
|
1728 |
+
|
1729 |
+
## support batched generation
|
1730 |
+
|
1731 |
+
class SelectiveScanFn(torch.autograd.Function):
|
1732 |
+
|
1733 |
+
@staticmethod
|
1734 |
+
def forward(ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
|
1735 |
+
return_last_state=False):
|
1736 |
+
if u.stride(-1) != 1:
|
1737 |
+
u = u.contiguous()
|
1738 |
+
if delta.stride(-1) != 1:
|
1739 |
+
delta = delta.contiguous()
|
1740 |
+
if D is not None:
|
1741 |
+
D = D.contiguous()
|
1742 |
+
if B.stride(-1) != 1:
|
1743 |
+
B = B.contiguous()
|
1744 |
+
if C.stride(-1) != 1:
|
1745 |
+
C = C.contiguous()
|
1746 |
+
if z is not None and z.stride(-1) != 1:
|
1747 |
+
z = z.contiguous()
|
1748 |
+
if B.dim() == 3:
|
1749 |
+
B = rearrange(B, "b dstate l -> b 1 dstate l")
|
1750 |
+
ctx.squeeze_B = True
|
1751 |
+
if C.dim() == 3:
|
1752 |
+
C = rearrange(C, "b dstate l -> b 1 dstate l")
|
1753 |
+
ctx.squeeze_C = True
|
1754 |
+
out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus)
|
1755 |
+
ctx.delta_softplus = delta_softplus
|
1756 |
+
ctx.has_z = z is not None
|
1757 |
+
last_state = x[:, :, -1, 1::2] # (batch, dim, dstate)
|
1758 |
+
if not ctx.has_z:
|
1759 |
+
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x)
|
1760 |
+
return out if not return_last_state else (out, last_state)
|
1761 |
+
else:
|
1762 |
+
ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out)
|
1763 |
+
out_z = rest[0]
|
1764 |
+
return out_z if not return_last_state else (out_z, last_state)
|
1765 |
+
|
1766 |
+
@staticmethod
|
1767 |
+
def backward(ctx, dout, *args):
|
1768 |
+
if not ctx.has_z:
|
1769 |
+
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors
|
1770 |
+
z = None
|
1771 |
+
out = None
|
1772 |
+
else:
|
1773 |
+
u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors
|
1774 |
+
if dout.stride(-1) != 1:
|
1775 |
+
dout = dout.contiguous()
|
1776 |
+
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
|
1777 |
+
# backward of selective_scan_cuda with the backward of chunk).
|
1778 |
+
# Here we just pass in None and dz will be allocated in the C++ code.
|
1779 |
+
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd(
|
1780 |
+
u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus,
|
1781 |
+
False # option to recompute out_z, not used here
|
1782 |
+
)
|
1783 |
+
dz = rest[0] if ctx.has_z else None
|
1784 |
+
dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB
|
1785 |
+
dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC
|
1786 |
+
return (du, ddelta, dA, dB, dC,
|
1787 |
+
dD if D is not None else None,
|
1788 |
+
dz,
|
1789 |
+
ddelta_bias if delta_bias is not None else None,
|
1790 |
+
None,
|
1791 |
+
None)
|
1792 |
+
|
1793 |
+
|
1794 |
+
def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
|
1795 |
+
return_last_state=False):
|
1796 |
+
"""if return_last_state is True, returns (out, last_state)
|
1797 |
+
last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
|
1798 |
+
not considered in the backward pass.
|
1799 |
+
"""
|
1800 |
+
return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
|
1801 |
+
|
1802 |
+
|
1803 |
+
class MambaInnerFn(torch.autograd.Function):
|
1804 |
+
|
1805 |
+
@staticmethod
|
1806 |
+
@custom_fwd(device_type="cuda")
|
1807 |
+
def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
1808 |
+
out_proj_weight, out_proj_bias,
|
1809 |
+
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
|
1810 |
+
C_proj_bias=None, mask=None, delta_softplus=True, checkpoint_lvl=1,):
|
1811 |
+
"""
|
1812 |
+
xz: (batch, dim, seqlen)
|
1813 |
+
"""
|
1814 |
+
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
|
1815 |
+
assert checkpoint_lvl in [0, 1]
|
1816 |
+
L = xz.shape[-1]
|
1817 |
+
delta_rank = delta_proj_weight.shape[1]
|
1818 |
+
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
|
1819 |
+
if torch.is_autocast_enabled():
|
1820 |
+
x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
1821 |
+
delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
1822 |
+
out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
1823 |
+
out_proj_bias = (out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype())
|
1824 |
+
if out_proj_bias is not None else None)
|
1825 |
+
if xz.stride(-1) != 1:
|
1826 |
+
xz = xz.contiguous()
|
1827 |
+
conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
|
1828 |
+
x, z = xz.chunk(2, dim=1)
|
1829 |
+
if mask is not None:
|
1830 |
+
x = x * mask.unsqueeze(1)
|
1831 |
+
conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
|
1832 |
+
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(
|
1833 |
+
x, conv1d_weight, conv1d_bias, None, None, None, True
|
1834 |
+
)
|
1835 |
+
if mask is not None:
|
1836 |
+
conv1d_out = conv1d_out * mask.unsqueeze(1)
|
1837 |
+
# We're being very careful here about the layout, to avoid extra transposes.
|
1838 |
+
# We want delta to have d as the slowest moving dimension
|
1839 |
+
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
|
1840 |
+
x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
|
1841 |
+
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L)
|
1842 |
+
ctx.is_variable_B = B is None
|
1843 |
+
ctx.is_variable_C = C is None
|
1844 |
+
ctx.B_proj_bias_is_None = B_proj_bias is None
|
1845 |
+
ctx.C_proj_bias_is_None = C_proj_bias is None
|
1846 |
+
if B is None: # variable B
|
1847 |
+
B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate)
|
1848 |
+
if B_proj_bias is not None:
|
1849 |
+
B = B + B_proj_bias.to(dtype=B.dtype)
|
1850 |
+
if not A.is_complex():
|
1851 |
+
# B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
|
1852 |
+
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
1853 |
+
else:
|
1854 |
+
B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
|
1855 |
+
else:
|
1856 |
+
if B.stride(-1) != 1:
|
1857 |
+
B = B.contiguous()
|
1858 |
+
if C is None: # variable C
|
1859 |
+
C = x_dbl[:, -d_state:] # (bl dstate)
|
1860 |
+
if C_proj_bias is not None:
|
1861 |
+
C = C + C_proj_bias.to(dtype=C.dtype)
|
1862 |
+
if not A.is_complex():
|
1863 |
+
# C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
|
1864 |
+
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
1865 |
+
else:
|
1866 |
+
C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
|
1867 |
+
else:
|
1868 |
+
if C.stride(-1) != 1:
|
1869 |
+
C = C.contiguous()
|
1870 |
+
if D is not None:
|
1871 |
+
D = D.contiguous()
|
1872 |
+
out, scan_intermediates, out_z = selective_scan_cuda.fwd(
|
1873 |
+
conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
|
1874 |
+
)
|
1875 |
+
ctx.delta_softplus = delta_softplus
|
1876 |
+
ctx.out_proj_bias_is_None = out_proj_bias is None
|
1877 |
+
ctx.checkpoint_lvl = checkpoint_lvl
|
1878 |
+
if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
|
1879 |
+
conv1d_out, delta = None, None
|
1880 |
+
ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight,
|
1881 |
+
delta_proj_weight, out_proj_weight, conv1d_out, delta,
|
1882 |
+
A, B, C, D, delta_bias, scan_intermediates, out)
|
1883 |
+
return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
|
1884 |
+
|
1885 |
+
@staticmethod
|
1886 |
+
@custom_bwd(device_type="cuda")
|
1887 |
+
def backward(ctx, dout):
|
1888 |
+
# dout: (batch, seqlen, dim)
|
1889 |
+
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
|
1890 |
+
(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight,
|
1891 |
+
conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, out) = ctx.saved_tensors
|
1892 |
+
L = xz.shape[-1]
|
1893 |
+
delta_rank = delta_proj_weight.shape[1]
|
1894 |
+
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
|
1895 |
+
x, z = xz.chunk(2, dim=1)
|
1896 |
+
if dout.stride(-1) != 1:
|
1897 |
+
dout = dout.contiguous()
|
1898 |
+
if ctx.checkpoint_lvl == 1:
|
1899 |
+
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(
|
1900 |
+
x, conv1d_weight, conv1d_bias, None, None, None, True
|
1901 |
+
)
|
1902 |
+
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(),
|
1903 |
+
"d (b l) -> b d l", l = L)
|
1904 |
+
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
|
1905 |
+
# backward of selective_scan_cuda with the backward of chunk).
|
1906 |
+
dxz = torch.empty_like(xz) # (batch, dim, seqlen)
|
1907 |
+
dx, dz = dxz.chunk(2, dim=1)
|
1908 |
+
dout = rearrange(dout, "b l e -> e (b l)")
|
1909 |
+
dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L)
|
1910 |
+
dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd(
|
1911 |
+
conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz,
|
1912 |
+
ctx.delta_softplus,
|
1913 |
+
True # option to recompute out_z
|
1914 |
+
)
|
1915 |
+
dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)"))
|
1916 |
+
dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
|
1917 |
+
dD = dD if D is not None else None
|
1918 |
+
dx_dbl = torch.empty_like(x_dbl)
|
1919 |
+
dB_proj_bias = None
|
1920 |
+
if ctx.is_variable_B:
|
1921 |
+
if not A.is_complex():
|
1922 |
+
dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
|
1923 |
+
else:
|
1924 |
+
dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
|
1925 |
+
dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
|
1926 |
+
dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d)
|
1927 |
+
dB = None
|
1928 |
+
dC_proj_bias = None
|
1929 |
+
if ctx.is_variable_C:
|
1930 |
+
if not A.is_complex():
|
1931 |
+
dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
|
1932 |
+
else:
|
1933 |
+
dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
|
1934 |
+
dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
|
1935 |
+
dx_dbl[:, -d_state:] = dC # (bl d)
|
1936 |
+
dC = None
|
1937 |
+
ddelta = rearrange(ddelta, "b d l -> d (b l)")
|
1938 |
+
ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
|
1939 |
+
dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
|
1940 |
+
dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
|
1941 |
+
dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
|
1942 |
+
dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
|
1943 |
+
dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
|
1944 |
+
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
|
1945 |
+
# backward of conv1d with the backward of chunk).
|
1946 |
+
dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd(
|
1947 |
+
x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True
|
1948 |
+
)
|
1949 |
+
dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
|
1950 |
+
dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
|
1951 |
+
return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight,
|
1952 |
+
dout_proj_weight, dout_proj_bias,
|
1953 |
+
dA, dB, dC, dD,
|
1954 |
+
ddelta_bias if delta_bias is not None else None,
|
1955 |
+
dB_proj_bias, dC_proj_bias, None, None)
|
1956 |
+
|
1957 |
+
|
1958 |
+
def mamba_inner_fn(
|
1959 |
+
xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
1960 |
+
out_proj_weight, out_proj_bias,
|
1961 |
+
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
|
1962 |
+
C_proj_bias=None, mask=None, delta_softplus=True
|
1963 |
+
):
|
1964 |
+
return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
1965 |
+
out_proj_weight, out_proj_bias,
|
1966 |
+
A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, mask, delta_softplus)
|
1967 |
+
|
1968 |
+
|
1969 |
+
def lambda_init_fn(depth):
|
1970 |
+
return 0.8 - 0.6 * math.exp(-0.3 * depth)
|
1971 |
+
|
1972 |
+
|
1973 |
+
def split_heads(x):
|
1974 |
+
# split by num_heads, the stripe pattern is friendly to tensor parallel.
|
1975 |
+
x = rearrange(x, "... (H two) D -> ... H two D", two=2)
|
1976 |
+
x1 = x[..., 0, :]
|
1977 |
+
x2 = x[..., 1, :]
|
1978 |
+
return x1, x2
|
1979 |
+
|
1980 |
+
class FlashDiffCustomAttention(nn.Module):
|
1981 |
+
"""Implement the scaled dot product attention with softmax.
|
1982 |
+
Arguments
|
1983 |
+
---------
|
1984 |
+
head_dim: The dimension of the heads.
|
1985 |
+
depth: The layer id, starting from 0.
|
1986 |
+
"""
|
1987 |
+
|
1988 |
+
def __init__(
|
1989 |
+
self,
|
1990 |
+
head_dim,
|
1991 |
+
depth,
|
1992 |
+
fa_og = True,
|
1993 |
+
):
|
1994 |
+
super().__init__()
|
1995 |
+
assert flash_attn_varlen_func is not None, "FlashAttention is not installed"
|
1996 |
+
assert flash_attn_func is not None, "FlashAttention is not installed"
|
1997 |
+
self.head_dim = head_dim
|
1998 |
+
self.fa_og = fa_og # turning it to false needs customized flash attention https://github.com/xiayuqing0622/flex_head_fa
|
1999 |
+
self.lambda_init = lambda_init_fn(depth)
|
2000 |
+
self.lambda_q1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1))
|
2001 |
+
self.lambda_k1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1))
|
2002 |
+
self.lambda_q2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1))
|
2003 |
+
self.lambda_k2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1))
|
2004 |
+
|
2005 |
+
self.subln = SambaYRMSNorm(2 * self.head_dim, eps=1e-5)
|
2006 |
+
|
2007 |
+
def forward(
|
2008 |
+
self,
|
2009 |
+
q,
|
2010 |
+
k,
|
2011 |
+
v,
|
2012 |
+
dropout_p = 0.0,
|
2013 |
+
cu_seqlens_q=None,
|
2014 |
+
max_seqlen_q=None,
|
2015 |
+
cu_seqlens_k=None,
|
2016 |
+
max_seqlen_k=None,
|
2017 |
+
softmax_scale=None,
|
2018 |
+
window_size=(-1, -1),
|
2019 |
+
causal=None,
|
2020 |
+
):
|
2021 |
+
"""Implements the multihead softmax attention.
|
2022 |
+
Arguments
|
2023 |
+
---------
|
2024 |
+
q, k, v: The tensors containing the query, key, and value.
|
2025 |
+
If cu_seqlens is None and max_seqlen is None, then each has shape (B, S, H, D).
|
2026 |
+
If cu_seqlens is not None and max_seqlen is not None, then each has shape
|
2027 |
+
(total, H, D), where total is the sum of the sequence lengths in the batch.
|
2028 |
+
causal: if passed, will override self.causal
|
2029 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
2030 |
+
of the sequences in the batch, used to index into qkv.
|
2031 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
2032 |
+
Returns:
|
2033 |
+
--------
|
2034 |
+
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
|
2035 |
+
else (B, S, H, D).
|
2036 |
+
"""
|
2037 |
+
q = q.to(torch.bfloat16)
|
2038 |
+
k = k.to(torch.bfloat16)
|
2039 |
+
v = v.to(torch.bfloat16)
|
2040 |
+
|
2041 |
+
assert q.dtype in [torch.float16, torch.bfloat16]
|
2042 |
+
assert q.is_cuda and k.is_cuda and v.is_cuda
|
2043 |
+
#causal = self.causal if causal is None else causal
|
2044 |
+
unpadded = cu_seqlens_q is not None
|
2045 |
+
q1, q2 = split_heads(q)
|
2046 |
+
k1, k2 = split_heads(k)
|
2047 |
+
if self.fa_og:
|
2048 |
+
v1, v2 = split_heads(v)
|
2049 |
+
else:
|
2050 |
+
v = rearrange(v, "... (H two) D -> ... H (two D)", two=2)
|
2051 |
+
|
2052 |
+
kwargs = {
|
2053 |
+
"dropout_p": dropout_p,
|
2054 |
+
"softmax_scale": softmax_scale,
|
2055 |
+
"causal": causal,
|
2056 |
+
"window_size": window_size,
|
2057 |
+
}
|
2058 |
+
|
2059 |
+
if unpadded:
|
2060 |
+
assert cu_seqlens_q.dtype == torch.int32
|
2061 |
+
assert max_seqlen_q is not None
|
2062 |
+
assert isinstance(max_seqlen_q, int)
|
2063 |
+
assert cu_seqlens_k is not None
|
2064 |
+
assert cu_seqlens_k.dtype == torch.int32
|
2065 |
+
assert max_seqlen_k is not None
|
2066 |
+
assert isinstance(max_seqlen_k, int)
|
2067 |
+
|
2068 |
+
kwargs.update({
|
2069 |
+
"cu_seqlens_q": cu_seqlens_q,
|
2070 |
+
"max_seqlen_q": max_seqlen_q,
|
2071 |
+
"cu_seqlens_k": cu_seqlens_k,
|
2072 |
+
"max_seqlen_k": max_seqlen_k,
|
2073 |
+
})
|
2074 |
+
attn_func = flash_attn_varlen_func
|
2075 |
+
else:
|
2076 |
+
attn_func = flash_attn_func
|
2077 |
+
|
2078 |
+
if self.fa_og:
|
2079 |
+
attn11 = attn_func(q1, k1, v1, **kwargs)
|
2080 |
+
attn12 = attn_func(q1, k1, v2, **kwargs)
|
2081 |
+
attn1 = torch.cat([attn11, attn12], dim=-1)
|
2082 |
+
attn21 = attn_func(q2, k2, v1, **kwargs)
|
2083 |
+
attn22 = attn_func(q2, k2, v2, **kwargs)
|
2084 |
+
attn2 = torch.cat([attn21, attn22], dim=-1)
|
2085 |
+
else:
|
2086 |
+
attn1 = attn_func(q1, k1, v, **kwargs)
|
2087 |
+
attn2 = attn_func(q2, k2, v, **kwargs)
|
2088 |
+
|
2089 |
+
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1).float()).type_as(q)
|
2090 |
+
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1).float()).type_as(q)
|
2091 |
+
lambda_full = lambda_1 - lambda_2 + self.lambda_init
|
2092 |
+
|
2093 |
+
attn = attn1 - lambda_full * attn2
|
2094 |
+
attn = self.subln(attn)
|
2095 |
+
attn = attn * (1 - self.lambda_init)
|
2096 |
+
# reshape back to 2 * num_head
|
2097 |
+
attn = rearrange(attn, "... H (two D) -> ... (H two) D", two=2)
|
2098 |
+
return attn
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"199999": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"200018": {
|
15 |
+
"content": "<|endofprompt|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"200019": {
|
23 |
+
"content": "<|assistant|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": true,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"200020": {
|
31 |
+
"content": "<|end|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": true,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"200021": {
|
39 |
+
"content": "<|user|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": true,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"200022": {
|
47 |
+
"content": "<|system|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": true,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"200023": {
|
55 |
+
"content": "<|tool|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": true,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"200024": {
|
63 |
+
"content": "<|/tool|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": true,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"200025": {
|
71 |
+
"content": "<|tool_call|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": true,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"200026": {
|
79 |
+
"content": "<|/tool_call|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": true,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"200027": {
|
87 |
+
"content": "<|tool_response|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": true,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"200028": {
|
95 |
+
"content": "<|tag|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": true,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"bos_token": "<|endoftext|>",
|
104 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}",
|
105 |
+
"clean_up_tokenization_spaces": false,
|
106 |
+
"eos_token": "<|endoftext|>",
|
107 |
+
"model_max_length": 65536,
|
108 |
+
"pad_token": "<|endoftext|>",
|
109 |
+
"tokenizer_class": "GPT2Tokenizer",
|
110 |
+
"unk_token": "<|endoftext|>"
|
111 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|