Update meshconfig.py
Browse files- meshconfig.py +63 -2
meshconfig.py
CHANGED
|
@@ -1,3 +1,64 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig, PreTrainedModel, AutoModelForCausalLM
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import math
|
| 6 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 7 |
|
| 8 |
+
class MeshConfig(PretrainedConfig):
|
| 9 |
+
model_type = "mesh"
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
vocab_size=32000,
|
| 14 |
+
hidden_size=768,
|
| 15 |
+
intermediate_size=2048,
|
| 16 |
+
num_hidden_layers=12,
|
| 17 |
+
num_attention_heads=12,
|
| 18 |
+
num_key_value_heads=12,
|
| 19 |
+
max_position_embeddings=4096,
|
| 20 |
+
initializer_range=0.02,
|
| 21 |
+
rms_norm_eps=1e-6,
|
| 22 |
+
use_cache=True,
|
| 23 |
+
pad_token_id=0,
|
| 24 |
+
bos_token_id=1,
|
| 25 |
+
eos_token_id=2,
|
| 26 |
+
tie_word_embeddings=False,
|
| 27 |
+
# Mesh specific configurations
|
| 28 |
+
mesh_grid_size=(2, 2), # 2x2 grid
|
| 29 |
+
expert_intermediate_size=256, # Example size for expert intermediate layer
|
| 30 |
+
routing_k=2, # Top-k routing
|
| 31 |
+
neighbor_exchange_enabled=True,
|
| 32 |
+
cross_expert_attention_enabled=True,
|
| 33 |
+
**kwargs
|
| 34 |
+
):
|
| 35 |
+
super().__init__(
|
| 36 |
+
vocab_size=vocab_size,
|
| 37 |
+
hidden_size=hidden_size,
|
| 38 |
+
intermediate_size=intermediate_size,
|
| 39 |
+
num_hidden_layers=num_hidden_layers,
|
| 40 |
+
num_attention_heads=num_attention_heads,
|
| 41 |
+
num_key_value_heads=num_key_value_heads,
|
| 42 |
+
max_position_embeddings=max_position_embeddings,
|
| 43 |
+
initializer_range=initializer_range,
|
| 44 |
+
rms_norm_eps=rms_norm_eps,
|
| 45 |
+
use_cache=use_cache,
|
| 46 |
+
pad_token_id=pad_token_id,
|
| 47 |
+
bos_token_id=bos_token_id,
|
| 48 |
+
eos_token_id=eos_token_id,
|
| 49 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 50 |
+
**kwargs,
|
| 51 |
+
)
|
| 52 |
+
self.mesh_grid_size = mesh_grid_size
|
| 53 |
+
# Calculate expert_intermediate_size based on the shared and expert parameter split
|
| 54 |
+
# Total parameters = Shared (Embedding, Norm, LM Head) + Experts + Overhead
|
| 55 |
+
# This calculation is complex and depends on the specific layer mapping.
|
| 56 |
+
# For now, let's use a placeholder or calculate it based on the target parameter count.
|
| 57 |
+
# Target A242M (top-2): 100M shared + 135M (2 experts) + 7M overhead = 242M
|
| 58 |
+
# Let's assume the 135M for 2 experts is primarily in the intermediate size.
|
| 59 |
+
# We need to determine how Gemma's intermediate size maps to the expert intermediate size.
|
| 60 |
+
# For now, I will keep a placeholder or a simple ratio.
|
| 61 |
+
self.expert_intermediate_size = intermediate_size // (mesh_grid_size[0] * mesh_grid_size[1]) # Example: divide intermediate size by number of experts
|
| 62 |
+
self.routing_k = routing_k
|
| 63 |
+
self.neighbor_exchange_enabled = neighbor_exchange_enabled
|
| 64 |
+
self.cross_expert_attention_enabled = cross_expert_attention_enabled
|