End of training
Browse files- README.md +18 -16
- model-00001-of-00002.safetensors +1 -1
- model-00002-of-00002.safetensors +1 -1
README.md
CHANGED
|
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 20 |
|
| 21 |
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
|
| 22 |
It achieves the following results on the evaluation set:
|
| 23 |
-
- Loss: 0.
|
| 24 |
-
- Accuracy: 0.
|
| 25 |
-
- F1: 0.
|
| 26 |
-
- Precision: 0.
|
| 27 |
-
- Recall: 0.
|
| 28 |
|
| 29 |
## Model description
|
| 30 |
|
|
@@ -44,28 +44,30 @@ More information needed
|
|
| 44 |
|
| 45 |
The following hyperparameters were used during training:
|
| 46 |
- learning_rate: 2e-05
|
| 47 |
-
- train_batch_size:
|
| 48 |
-
- eval_batch_size:
|
| 49 |
- seed: 4711
|
| 50 |
-
- gradient_accumulation_steps:
|
| 51 |
- total_train_batch_size: 32
|
| 52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 53 |
- lr_scheduler_type: linear
|
| 54 |
-
- num_epochs:
|
| 55 |
- mixed_precision_training: Native AMP
|
| 56 |
|
| 57 |
### Training results
|
| 58 |
|
| 59 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 60 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 61 |
-
| 0.
|
| 62 |
-
| 0.
|
| 63 |
-
| 0.
|
|
|
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
### Framework versions
|
| 67 |
|
| 68 |
-
- Transformers 4.
|
| 69 |
-
- Pytorch 2.
|
| 70 |
-
- Datasets 2.
|
| 71 |
-
- Tokenizers 0.15.
|
|
|
|
| 20 |
|
| 21 |
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
|
| 22 |
It achieves the following results on the evaluation set:
|
| 23 |
+
- Loss: 0.8154
|
| 24 |
+
- Accuracy: 0.7877
|
| 25 |
+
- F1: 0.7861
|
| 26 |
+
- Precision: 0.7736
|
| 27 |
+
- Recall: 0.7991
|
| 28 |
|
| 29 |
## Model description
|
| 30 |
|
|
|
|
| 44 |
|
| 45 |
The following hyperparameters were used during training:
|
| 46 |
- learning_rate: 2e-05
|
| 47 |
+
- train_batch_size: 8
|
| 48 |
+
- eval_batch_size: 8
|
| 49 |
- seed: 4711
|
| 50 |
+
- gradient_accumulation_steps: 4
|
| 51 |
- total_train_batch_size: 32
|
| 52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 53 |
- lr_scheduler_type: linear
|
| 54 |
+
- num_epochs: 5
|
| 55 |
- mixed_precision_training: Native AMP
|
| 56 |
|
| 57 |
### Training results
|
| 58 |
|
| 59 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 60 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 61 |
+
| 0.5701 | 1.0 | 996 | 0.4446 | 0.7417 | 0.7633 | 0.6910 | 0.8525 |
|
| 62 |
+
| 0.3448 | 2.0 | 1993 | 0.4246 | 0.7681 | 0.7490 | 0.7944 | 0.7086 |
|
| 63 |
+
| 0.2305 | 3.0 | 2989 | 0.4693 | 0.7912 | 0.7924 | 0.7701 | 0.8160 |
|
| 64 |
+
| 0.1564 | 4.0 | 3986 | 0.5977 | 0.7836 | 0.7790 | 0.7774 | 0.7806 |
|
| 65 |
+
| 0.1102 | 5.0 | 4980 | 0.8154 | 0.7877 | 0.7861 | 0.7736 | 0.7991 |
|
| 66 |
|
| 67 |
|
| 68 |
### Framework versions
|
| 69 |
|
| 70 |
+
- Transformers 4.38.0
|
| 71 |
+
- Pytorch 2.2.0+cu121
|
| 72 |
+
- Datasets 2.17.1
|
| 73 |
+
- Tokenizers 0.15.2
|
model-00001-of-00002.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4986380064
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8bed09cde4d68e6bc535c04f10b23a3e26e69a8ff339f713cadb9fc4e0fcec74
|
| 3 |
size 4986380064
|
model-00002-of-00002.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 135308016
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c14f821faea4426fa1d849bdbbb12d5a0247877919215386cae53efef6c2219
|
| 3 |
size 135308016
|