--- tags: - weight-space-learning - neural-network-autoencoder - autoencoder - transformer datasets: - maximuspowers/muat-fourier-5 --- # Weight-Space Autoencoder (TRANSFORMER) This model is a weight-space autoencoder trained on neural network activation weights/signatures. It includes both an encoder (compresses weights into latent representations) and a decoder (reconstructs weights from latent codes). ## Model Description - **Architecture**: Transformer encoder-decoder - **Training Dataset**: maximuspowers/muat-fourier-5 - **Input Mode**: signature - **Latent Dimension**: 256 ## Tokenization - **Chunk Size**: 64 weight values per token - **Max Tokens**: 512 - **Metadata**: True ## Training Config - **Loss Function**: cosine - **Optimizer**: adam - **Learning Rate**: 0.0001 - **Batch Size**: 16 ## Performance Metrics (Test Set) - **MSE**: 0.299696 - **MAE**: 0.303521 - **RMSE**: 0.547445 - **Cosine Similarity**: 0.8642 - **R² Score**: 0.0638