File size: 11,743 Bytes
d8a9090 4e990dd d8a9090 4e990dd d8a9090 4e990dd d8a9090 4e990dd 93cc485 4e990dd 93cc485 4e990dd 93cc485 4e990dd 93cc485 4e990dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
---
license: mit
tags:
- image-quality-assessment
- computer-vision
- brisque
- aesthetic-predictor
- clip
- fusion
- pytorch
- image-classification
language:
- en
pipeline_tag: image-classification
library_name: pytorch
datasets:
- spaq
metrics:
- correlation
- r2
- mae
base_model:
- openai/clip-vit-base-patch32
---
# Image Quality Fusion Model
A multi-modal image quality assessment system that combines BRISQUE, Aesthetic Predictor, and CLIP features to predict human-like quality judgments on a 1-10 scale.
## 🎯 Model Description
This model fuses three complementary approaches to comprehensive image quality assessment:
- **🔧 BRISQUE (OpenCV)**: Technical quality assessment detecting blur, noise, compression artifacts, and distortions
- **🎨 Aesthetic Predictor (LAION)**: Visual appeal assessment using CLIP ViT-B-32 features trained on human aesthetic ratings
- **🧠 CLIP (OpenAI)**: Semantic understanding and high-level feature extraction for content awareness
The fusion network learns optimal weights to combine these diverse quality signals, producing human-like quality judgments that correlate strongly with subjective assessments.
## 🚀 Quick Start
### Installation
```bash
pip install torch torchvision huggingface_hub opencv-python pillow open-clip-torch
```
### Basic Usage
```python
# Define a minimal loader class that matches the uploaded head (512 -> 256 -> 1)
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
class IQFModel(nn.Module, PyTorchModelHubMixin):
def __init__(self, in_dim=512, hidden=256, **kwargs):
# Accept either in_dim/hidden or clip_embed_dim/hidden_dim from config.json
in_dim = kwargs.pop("clip_embed_dim", in_dim)
hidden = kwargs.pop("hidden_dim", hidden)
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(in_dim, hidden),
nn.ReLU(),
nn.Linear(hidden, 1),
)
def forward(self, x):
return self.mlp(x)
# Load weights from the Hub (defaults to model.safetensors)
model = IQFModel.from_pretrained("matthewyuan/image-quality-fusion", map_location="cpu")
model.eval()
# Smoke test on a dummy 512-d vector
with torch.no_grad():
y = model(torch.randn(1, 512)).item()
print(f"score: {y}")
```
### Advanced Usage
```python
import torch
import torch.nn as nn
from PIL import Image
import open_clip
from huggingface_hub import PyTorchModelHubMixin
# Minimal loader class (same as above)
class IQFModel(nn.Module, PyTorchModelHubMixin):
def __init__(self, in_dim=512, hidden=256, **kwargs):
in_dim = kwargs.pop("clip_embed_dim", in_dim)
hidden = kwargs.pop("hidden_dim", hidden)
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(in_dim, hidden),
nn.ReLU(),
nn.Linear(hidden, 1),
)
def forward(self, x):
return self.mlp(x)
# 1) Load CLIP ViT-B/32 image encoder (512-d output)
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
"ViT-B-32", pretrained="openai"
)
clip_model.eval()
# 2) Load the fusion head from the Hub
fusion = IQFModel.from_pretrained("matthewyuan/image-quality-fusion", map_location="cpu")
fusion.eval()
def image_to_clip_embedding(img: Image.Image) -> torch.Tensor:
x = clip_preprocess(img).unsqueeze(0) # [1, 3, H, W]
with torch.no_grad():
feat = clip_model.encode_image(x) # [1, 512]
feat = feat / feat.norm(dim=-1, keepdim=True)
return feat
def predict_quality(image_path: str) -> float:
img = Image.open(image_path).convert("RGB")
emb = image_to_clip_embedding(img) # [1, 512]
with torch.no_grad():
score = fusion(emb).item() # scalar
return float(score)
print("score:", predict_quality("test.jpg"))
```
## 📊 Performance Metrics
Evaluated on the SPAQ dataset (11,125 smartphone images with human quality ratings):
| Metric | Value | Description |
|--------|-------|-------------|
| **Pearson Correlation** | 0.520 | Correlation with human judgments |
| **R² Score** | 0.250 | Coefficient of determination |
| **Mean Absolute Error** | 1.41 | Average prediction error (1-10 scale) |
| **Root Mean Square Error** | 1.69 | RMS prediction error |
### Comparison with Individual Components
| Method | Correlation | R² Score | MAE |
|--------|-------------|----------|-----|
| **Fusion Model** | **0.520** | **0.250** | **1.41** |
| BRISQUE Only | 0.31 | 0.12 | 2.1 |
| Aesthetic Only | 0.41 | 0.18 | 1.8 |
| CLIP Only | 0.28 | 0.09 | 2.3 |
*The fusion approach significantly outperforms individual components.*
## 🏗️ Model Architecture
```
Input Image (RGB)
├── OpenCV BRISQUE → Technical Quality Score (0-100, normalized)
├── LAION Aesthetic → Aesthetic Score (0-10, normalized)
└── OpenAI CLIP-B32 → Semantic Features (512-dimensional)
↓
Feature Fusion Network
┌─────────────────────────┐
│ BRISQUE: 1D → 64 → 128 │
│ Aesthetic: 1D → 64 → 128│
│ CLIP: 512D → 256 → 128 │
└─────────────────────────┘
↓ (concat)
Deep Fusion Layers (384D → 256D → 128D → 1D)
Dropout (0.3) + ReLU activations
↓
Human-like Quality Score (1.0 - 10.0)
```
### Technical Details
- **Input Resolution**: Any size (resized to 224×224 for CLIP)
- **Architecture**: Feed-forward neural network with residual connections
- **Activation Functions**: ReLU for hidden layers, Linear for output
- **Regularization**: Dropout (0.3), Early stopping
- **Output Range**: 1.0 - 10.0 (human rating scale)
- **Parameters**: ~2.1M total parameters
## 🔬 Training Details
### Dataset
- **Name**: SPAQ (Smartphone Photography Attribute and Quality)
- **Size**: 11,125 high-resolution smartphone images
- **Annotations**: Human quality ratings (1-10 scale, 5+ annotators per image)
- **Split**: 80% train, 10% validation, 10% test
- **Domain**: Consumer smartphone photography
### Training Configuration
- **Framework**: PyTorch 2.0+ with MPS acceleration (M1 optimized)
- **Optimizer**: AdamW (lr=1e-3, weight_decay=1e-4)
- **Batch Size**: 128 (optimized for 32GB unified memory)
- **Epochs**: 50 with early stopping (patience=10)
- **Loss Function**: Mean Squared Error (MSE)
- **Learning Rate Schedule**: ReduceLROnPlateau (factor=0.5, patience=5)
- **Hardware**: M1 MacBook Pro (32GB RAM)
- **Training Time**: ~1 hour (with feature caching)
### Optimization Techniques
- **Mixed Precision Training**: MPS autocast for M1 acceleration
- **Feature Caching**: Pre-computed embeddings for 20-30x speedup
- **Data Loading**: Optimized DataLoader (6-8 workers, memory pinning)
- **Memory Management**: Garbage collection every 10 batches
- **Preprocessing Pipeline**: Parallel BRISQUE computation
## 📱 Use Cases
### Professional Applications
- **Content Management**: Automatic quality filtering for large image databases
- **Social Media**: Real-time quality assessment for user uploads
- **E-commerce**: Product image quality validation
- **Digital Asset Management**: Automated quality scoring for photo libraries
### Research Applications
- **Image Quality Research**: Benchmark for perceptual quality metrics
- **Dataset Curation**: Quality-based dataset filtering and ranking
- **Human Perception Studies**: Computational model of aesthetic judgment
- **Multi-modal Learning**: Example of successful feature fusion
### Creative Applications
- **Photography Tools**: Automated photo rating and selection
- **Mobile Apps**: Real-time quality feedback during capture
- **Photo Editing**: Quality-guided automatic enhancement
- **Portfolio Management**: Intelligent photo organization
## ⚠️ Limitations and Biases
### Model Limitations
- **Domain Specificity**: Trained primarily on smartphone photography
- **Resolution Dependency**: Performance may vary with very low/high resolution images
- **Cultural Bias**: Aesthetic preferences may reflect training data demographics
- **Temporal Bias**: Training data from specific time period may not reflect evolving preferences
### Technical Limitations
- **BRISQUE Scope**: May not capture all types of technical degradation
- **CLIP Bias**: Inherits biases from CLIP's training data
- **Aesthetic Subjectivity**: Individual preferences vary significantly
- **Computational Requirements**: Requires GPU for optimal inference speed
### Recommended Usage
- **Validation**: Always validate on your specific domain before production use
- **Human Oversight**: Use as a tool to assist, not replace, human judgment
- **Bias Mitigation**: Consider diverse evaluation datasets
- **Performance Monitoring**: Monitor performance on your specific use case
## 📚 Citation
If you use this model in your research, please cite:
```bibtex
@misc{image-quality-fusion-2024,
title={Image Quality Fusion: Multi-Modal Assessment with BRISQUE, Aesthetic, and CLIP Features},
author={Matthew Yuan},
year={2024},
howpublished={\url{https://huggingface.co/matthewyuan/image-quality-fusion}},
note={Trained on SPAQ dataset, deployed via GitHub Actions CI/CD}
}
```
## 🔗 Related Work
### Datasets
- [SPAQ Dataset](https://github.com/h4nwei/SPAQ) - Smartphone Photography Attribute and Quality
- [AVA Dataset](https://github.com/mtobeiyf/ava_downloader) - Aesthetic Visual Analysis
- [LIVE IQA](https://live.ece.utexas.edu/research/Quality/) - Laboratory for Image & Video Engineering
### Models
- [LAION Aesthetic Predictor](https://github.com/LAION-AI/aesthetic-predictor) - Aesthetic scoring model
- [OpenCLIP](https://github.com/mlfoundations/open_clip) - Open source CLIP implementation
- [BRISQUE](https://learnopencv.com/image-quality-assessment-brisque/) - Blind/Referenceless Image Spatial Quality Evaluator
## 🛠️ Development
### Local Development
```bash
# Clone repository
git clone https://github.com/mattkyuan/image-quality-fusion.git
cd image-quality-fusion
# Install dependencies
pip install -r requirements.txt
# Run training
python src/image_quality_fusion/training/train_fusion.py \
--image_dir data/images \
--annotations data/annotations.csv \
--prepare_data \
--epochs 50
```
### CI/CD Pipeline
This model is automatically deployed via GitHub Actions:
- **Training Pipeline**: Automated model training on code changes
- **Deployment Pipeline**: Automatic HF Hub deployment on model updates
- **Testing Pipeline**: Comprehensive model validation and testing
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](https://github.com/mattkyuan/image-quality-fusion/blob/main/LICENSE) file for details.
## 🙏 Acknowledgments
- **SPAQ Dataset**: H4nwei et al. for the comprehensive smartphone photography dataset
- **LAION**: For the aesthetic predictor model and training methodology
- **OpenAI**: For CLIP model architecture and pre-trained weights
- **OpenCV**: For BRISQUE implementation and computer vision tools
- **Hugging Face**: For model hosting and deployment infrastructure
- **PyTorch Team**: For the deep learning framework and MPS acceleration
## 📞 Contact
- **Repository**: [github.com/mattkyuan/image-quality-fusion](https://github.com/mattkyuan/image-quality-fusion)
- **Issues**: [GitHub Issues](https://github.com/mattkyuan/image-quality-fusion/issues)
- **Hugging Face**: [matthewyuan/image-quality-fusion](https://huggingface.co/matthewyuan/image-quality-fusion)
---
*This model was trained and deployed using automated CI/CD pipelines for reproducible ML workflows.*
|